Skip to main content
nuclear energy

Advanced Nuclear Energy Supply Chains 

October 10, 2025 Work Area: Advanced Nuclear

The Opportunity

Advanced nuclear energy is uniquely positioned to meet growing U.S. Advanced nuclear energy is uniquely positioned to meet growing U.S. energy demand, support American energy independence, provide reliable and affordable clean power, and create jobs. Fission reactors rely on several niche materials to operate efficiently and safely. Foreign Entity of Concern (“FEOC”) provisions for 48E, 45Y, and 45X tax credits should be made workable to accommodate a global nuclear supply chain where limited domestic capabilities exist.1

Advanced Nuclear Supply Chain: Key Technology and Fuel Cycle Components 

Technologies Fuel Cycle 
Existing Fleet: Large Light Water Reactors (LWRs) operate in the U.S. (~1 GWe)

Advanced Nuclear Technologies:  Small Modular Reactors (SMRs): Smaller, more flexible reactors that could reduce upfront costs and construction timelines; and enable more use cases. (~100MWe-350MWe) Microreactors: Compact reactors for remote or off-grid applications. (~100kWe-50MWe) 
Fuel Production: Uranium mining, milling, conversion, enrichment, deconversion, and fabrication.

Reactor Operation: Generating electricity through fission reactions.

Waste Management: Spent fuel storage in short-medium term (up to 100 years) in dry casks on-site,  possible interim storage in centralized off-site locations, and/or final long-term storage in geologic repositories.2 

Fuel Cycle Components 

  • Uranium: Nearly all nuclear fission power plants use uranium as fuel.3 The uranium fuel process includes mining uranium ore, milling it into uranium oxide powder (U3O8 commonly called “yellowcake”), converting it to UF6 gas, enriching the UF6 in the uranium isotope uranium-235 (U235) percentage, deconverting enriched UF6 into uranium oxide (UO2), then fabricating the enriched uranium oxide into fuel elements. Ensuring a reliable and robust commercial supply of conventional low-enriched uranium (LEU) enriched up to 5% U235 and high-assay low enriched uranium (HALEU) enriched up to 20% U235 is critical to the successful commercialization of advanced nuclear fission technologies. 
  • Mining and Milling: In 2023, the largest sources of uranium delivered to the United States were of foreign origin: Canada with 27% of total deliveries; Australia and Kazakhstan with 22%; Russian-origin material with 12%; and Uzbekistan-origin with 10%. United States material accounted for 5% of total deliveries in 2023 and 2022.4  
  • Conversion: There is a single domestic conversion plant – ConverDyn – but the plant is only capable of meeting between 30% and 60% of U.S. demand (depending on production levels).5  U.S. commercial reactors rely on Cameco (Canada), Orano (France), Rosatom (Russia), and CNNC (China) for remaining conversion services. 
  • Enrichment: UF6 gas is then used to produce enriched UF6. Approximately 95% of global enrichment services are provided by four companies: Orano, Urenco, CNNC, and Rosatom.6 These companies commercially enrich natural uranium from 0.7% U235 up to 5% U235 (LEU). Until recently, Russia and China were the only countries with commercial infrastructure to continue enriching uranium up to 19.75% U235 (HALEU).  
  • Deconversion: Enriched UF6 is then deconverted to produce solid uranium products. LEU deconversion services exist in the United States to support fuel fabrication. Deconversion services for LEU fuel fabrication are typically collocated and managed by major fuel fabricators (Westinghouse, Framatome, and GE Vernova). HALEU deconversion will require new deconversion facilities designed, licensed, and constructed to process up to 19.75% enriched uranium and processes that can deconvert UF6 to both oxide and metallic forms.  
  • Fuel Fabrication: Domestic services exist for traditional, light water reactor LEU fuel, primarily by Westinghouse and Framatome for pressurized water reactor fuels and GE Vernova for boiling water reactor fuels. For non-LWR fuels, TRISO-X, BWXT, Standard Nuclear, and GE Vernova are investing or already producing TRISO or metallic fuel for near-term demonstration projects. 

Technology/Reactor Design Components 

  • Lithium: Multiple reactor designs use lithium in their coolant systems. Existing pressurized light water reactors use the isotope lithium-7 (95% of naturally occurring lithium) to maintain coolant chemistry for corrosion purposes, and molten salt reactor (MSR) designs may use a molten salt mixture containing lithium-7 as a coolant. Enrichment capabilities for Li-7 are in high demand for these technologies, but domestic lithium enrichment capacity is currently limited. 
  • Graphite: Multiple advanced reactor designs, like high temperature gas reactors (HTGRs) and some MSR designs, will use nuclear-grade graphite in large volumes as a reactor moderator. Industrial-grade production of graphite does exist within the United States, but producing nuclear-grade graphite with fewer trace impurities is an intensive process, requiring the appropriate feedstock and purification processes necessary for qualification and use in nuclear reactors. Existing U.S. and international suppliers have their own proprietary formulations, implying no standardization across a nascent advanced nuclear industry, which has not provided the sufficient demand to justify the corresponding private investment. While the United States hopes to deploy graphite moderated advanced reactors at commercial scale by the 2030s, China has already built and operated graphite-moderated reactors and possesses reactor grade graphite production capacity. Dependence on Chinese graphite is a concern for the U.S. 
  • Nickel and Chromium: Nickel and chromium are also important for U.S. nuclear reactors, providing essential corrosion resistance and strength in high-temperature, radioactive environments within components like pressure vessels and piping. Nickel demand relies heavily on imports from Russia, Canada, and Southeast Asia, while demand for chromium depends almost entirely on imports, notably from Kazakhstan (via Russia), South Africa, and Turkey.   

U.S. and Foreign Supply Chain Capability 

Treasury and IRS should integrate advanced nuclear global supply chain considerations when designing guidance and implementing FEOC to enable the U.S. nuclear industry to comply and report in the development and deployment of new reactors.  

  • Fuel Cycle Constraints: U.S. lacks commercial-scale HALEU enrichment and deconversion facilities. Current dependence on Russia is acute.  
  • Heavy Manufacturing: No domestic capacity for ultra-large forgings; reliance on allied suppliers in Europe and Asia is unavoidable in the near term.  
  • Supporting Materials: Enriched Lithium-7 (Li-7) and nuclear-grade graphite are almost exclusively sourced from China and Russia.  
  • Instrumentation & Controls: Commercial electronics and chips often originate in China but are integrated and QA-certified in the U.S. 

Components of Interest 

CategoryComponent / Material  Current U.S. Capability  Foreign Capability 
Fuel Cycle  HALEU enrichment & deconversion   None   Russia has primary global market capacity   
Heavy Manufacturing  Reactor Pressure Vessel (large, AP1000)  None  Reliant on Japan, S. Korea, Italy  
Reactor Pressure Vessel (SMR scale)  Multiple U.S. firms  Capacity thin, demand risk  
Steam Generators / Pressurizers  Limited U.S.  Relies on allied foreign vendors  
Ultra-Large Forgings  None  Europe/Japan dominate  
Steam Turbines  Mostly Europe (Germany, France, Spain)  Thin U.S. capability  
Supporting Materials  Enriched Lithium-7  None  Near-exclusive to China/Russia  
Nuclear-Grade Graphite  None  Dominated by China  
Microchips   Limited  Dominated by China  

CATF’s full list of FEOC considerations can be found here. 

Related Posts

Stay in the know

Sign up today to receive the latest content, news, and developments from CATF experts.

"*" indicates required fields