CA TF Achieving Deep Emissions Reductions with CO₂ Networks

Many pathways are needed to decarbonize our energy system.

Carbon capture and storage offers a solution for deep emissions reductions from key industrial processes, including the production of iron and steel, cement, and chemicals, which remain the building blocks of modern society.

The building blocks of modern society:

We need to capture CO₂ before it makes it into the atmosphere.

Over 20% of Europe's GHG emissions come from industrial sources and **demand changes are unlikely to drop these emissions to zero.** Europe's GHG Emissions

Source: IEA-https://www.iea.org/reports/ccus-in-clean-energytransitions/regional-opportunities

20% Industrial Sources

Europe Industry Average Lifetime (IEA)

LIFETIME (IN YEARS)

What needs to happen?

Industrial CO₂ emissions need to be eliminated by 2050 in order to achieve climate neutrality.

Capture CO₂ at the source and store it in underground facilities. CO₂ capture is one of many options we need to implement for reducing industrial emissions.

The scale and urgency needed in order to shift the global economy to net-zero means we must **build on existing infrastructure to reduce emissions.**

CO₂ capture and storage needs to scale.

Capturing CO_2 is necessary, but for emission reductions at scale there needs to be easy access to CO₂ storage facilities.

This is why we need to build CO₂ networks that enable CO₂ transport and storage to decarbonize the global economy and scale carbon management infrastructure.

What are CO₂ Networks?

A CO_2 network is a shared system of efficiently sited CO_2 transport infrastructure and carefully selected geologic CO_2 storage sites that are connected to several CO_2 capture sites at industrial facilities.

 CO_2 is transported via by pipeline, ship, rail, barge, or road tanker to be stored in geological formations deep underground where geology is suitable for permanent and safe storage.

Why do we need to build CO₂ Networks in Europe?

Availability

Not all EU countries have suitable geology for storage, so CO_2 must be transported to regions that do, to enable equal access to carbon capture as a decarbonization option.

Transport & Infrastructure

Infrastructure to transport captured industrial CO_2 , and access to geologic storage opens opportunities for all countries to store CO_2 emissions.

Interconnected Networks

Interconnected CO_2 transport systems can collect CO_2 from multiple sources and deliver it to shared geologic storage hubs in suitable regions.

How CO₂ Networks Can Enable a Just Transition

Existing Technologies

The timeframe to reach net-zero means adopting existing technologies is needed to decarbonize industrial activities and we have to get this right because these are crucial industries for Europe.

Opportunity

In Europe, an additional 10,000 people could be employed in a centralised transport and storage industry in the North Sea by North Sea CO_2 network alone.

Source: IEA-https://www.iea.org/reports/ccus-in-clean-energy-transitions/regional-opportunities

We can lower the cost of industrial decarbonization through shared infrastructure.

 CO_2 transport and storage infrastructure has strong economies of scale, whereby larger infrastructure handling greater CO_2 volume has lower unit cost per ton of CO_2 .

CO₂ networks can set European nations up for at scale decarbonization extending beyond industrial sectors, potentially allowing negative emissions through carbon removal.

For more information, visit: catf.us/eu-expansion