

Key messages from the IPCC Special Report on 1.5°C

Already 1°C of global warming

At current rate, would reach 1.5°C between 2030 and 2052

Clear benefits to limiting warming to 1.5°C

We can still limit warming to 1.5°C but this requires unprecedented changes

Waiting for NDCs means missing 1.5°C

Limiting warming to 1.5°C would go hand in hand with achieving other societal goals

Global total net CO₂ emissions

percentile of scenarios

(Not shown above)

CCS in 1.5C-pathways: reducing emissions and removing CO₂

Modelled pathway without CCS: possible with immediate, strong action CCS has two roles:

- Reduce CO₂ emissions from fossil fuelled operations
- Remove CO₂ from atmosphere: combined with atmospheric removal, through biomass or CO₂

Feasibility of options in system transitions

Feasibility of CCS-related options

Mitigation Option	Evidence	Agreement	Ec	Tec	Inst	Soc	Env	Geo	Context
Solar PV	Robust	High							Cost-effectiveness affected by solar irradiation and incentive regime. Also enhanced by legal framework for independent power producers, which affects uptake
Power sector carbon dioxide capture and storage	Robust	High							Varies with local CO ₂ storage capacity, presence of legal framework, level of development and quality of public engagement
Industrial carbon dioxide capture, utilization and storage	Robust	High							High concentration of ${\rm CO_2}$ in exhaust gas improve economic and technical feasibility of CCUS in industry. ${\rm CO_2}$ storage or reuse possibilities
Bioenergy and carbon dioxide capture and storage	Robust	Medium							Depends on biomass availability, CO ₂ storage capacity, legal framework, economic status and social acceptance
Direct air carbon dioxide capture and storage	Medium	Medium							Depends on CO ₂ -free energy, CO ₂ storage capacity, legal framework, economic status and social acceptance

Enabling conditions for systems transitions – and CCS

