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1.  Introduction 
 
The purpose of this report is to describe a software application, the Powerplant Impact Estimator (PIE), 
developed to estimate the health and economic of electric generating units (EGUs) in the United States.  
In particular, we focus on the impacts in the years 2010, 2015, and 2020 of reducing ambient 
concentrations of particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5) – an air 
pollutant that has been linked to a variety of serious health effects, including asthma attacks, chronic 
bronchitis, hospital admissions, and premature mortality. 
 
To estimate the PM2.5-related benefits associated with reducing emissions from EGUs, the PIE model first 
calculates the impact on ambient air quality, and then using the results from epidemiological studies, it 
estimates the number of adverse health impacts (e.g., avoided deaths), and then finally it estimates the 
associated economic benefits.  This three-step process is the standard approach for evaluating the health 
and economic benefits of reduced air pollution.  EPA used this approach when evaluating the National 
Ambient Air Quality Standards (U.S. EPA, 2006), the Clean Air Act (U.S. EPA, 1999b), the benefits of 
reducing greenhouse gases (Abt Associates Inc., 1999),  the health effects of motor vehicles (U.S. EPA, 
2000; 2004), and other major regulations. 
 
This report describes the algorithms used to calculate population exposure, adverse health impacts, and 
the economic benefit of reducing these emissions.  Chapter 2 provides an overview of PIE, and Chapter 3 
describes the emissions reduction and modeling of the subsequent air quality change.  Chapters 4 and 5 
describe the estimation of health impacts and their valuation.  The various appendices describe in further 
detail the assumptions and calculations underlying the analysis, and they also present health impact 
estimates for existing and new EGUs. 
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2.  Overview of Powerplant Impact Estimator (PIE) 
 
 
Abt Associates developed the Powerplant Impact Estimator, or PIE, to support assessments of the human 
health benefits of air pollution reductions and their associated economic benefits.  PIE is the result of 
years of research and development, and reflects methods that are based on the peer-reviewed health and 
benefits analysis literature. 
 

2.1  Damage Function Approach 
 
PIE is based on a damage function approach, which involves modeling changes in ambient air pollution 
levels, calculating the associated change in adverse health effects, such as premature mortality, and then 
assigning an economic value to these effects.  For changes in the concentrations of particulate matter and 
ozone, this is typically done by translating a change in pollutant levels into associated changes in human 
health effects.  These health effects are then translated into economic values.   
 
The first step in this process involves health impact functions, which are derived from concentration-
response functions reported in the peer-reviewed epidemiological literature.  A typical health impact 
function has four components:  
(1) an effect estimate, which quantifies the change in health effects per unit of change in a pollutant, and 
is derived from a particular concentration-response function from an epidemiology study;  
(2) a baseline incidence rate for the health effect;  
(3) the affected population; and  
(4) the estimated change in the concentration of the pollutant.   
 
The health impact function might look like: 
 

( )10 −⋅=Δ Δxeyy β  
 
where 0y  is the baseline incidence (the baseline incidence rate times the affected population), β  is the 
effect estimate, and xΔ  is the estimated change in pollutant concentration.  Health impact functions come 
in many forms (as seen in Appendix B), but the basic elements remain the same. 
 
The result of these functions, yΔ , is an estimated change in the incidence of a particular health effect for 
a given change in air pollution.  Examples of health effects that have been associated with changes in air 
pollution levels include premature mortality, hospital admissions for respiratory and cardiovascular 
illnesses, and asthma exacerbation.   
 
The second step in the damage function approach involves estimated unit values that give the estimated 
economic value of avoiding a single case of a particular endpoint – a single death, for example, or a single 
hospital admission.  These unit values are derived from the economics literature, and come in several 
varieties.   
 

• For some endpoints, such as hospital admissions, we use cost of illness (COI) unit values, which 
estimate the cost of treating or mitigating the effect.  COI unit values generally underestimate the 
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true value of reductions in risk of a health effect, since they include hospital costs and lost wages, 
but do not include any estimate of the value of avoided pain and suffering. 

• For other endpoints, such as asthma exacerbation, we use willingness to pay (WTP) unit values, 
which are estimates of willingness to pay to avoid an asthma exacerbation.   

• Typically value of statistical life (VSL) unit values are used for reductions in risk of premature 
mortality.   

 
Returning to the previous equation, estimating the economic benefit of the estimated change in health 
incidence is a simple matter of multiplying by the associated unit value: 
 

ValueUnityBenefits ⋅Δ=$  
 
Finally, the calculation of total benefits involves summing estimated benefits across all non-overlapping 
health effects, such as hospital admissions for pneumonia, chronic lung disease, and cardiovascular-
related problems. 

 

2.2  PIE Analysis 
 
A PIE analysis relies on first estimating a reduction in air pollution emissions.  The determination fo the 
emission reduction occurs outside of PIE and is used as input to the PIE analysis.  After the user enters 
this information into PIE, the model then estimates: 
 

(1) the reduction in ambient PM2.5 levels in each county in the continental United States; 
(2) the associated reduction in the incidence of various adverse health effects; and  
(3) the associated economic benefit of these reductions in adverse health effects.  

 
Chapter 3 discusses how PIE calculates the change in ambient PM2.5 levels (Step 1).  Chapter 4 discusses 
the calculation of the reduction in the incidence of adverse health effects (Step2). Chapter 5 discusses the 
calculation of the economic benefit (Step 5).  The appendices to this report provide additional details for 
each of the steps. 

Figure 1 summarizes these steps, and illustrates the flow of data through PIE. 
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Figure 1.  PIE Data Flow 
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3.  Emissions and Impacts on Ambient PM2.5 
 
This chapter examines how reductions in sulfur dioxide (SO2), nitrogen oxides (NOx), fine particulate 
matter less than 2.5 microns in aerodynamic diameter (PM2.5), volatile organic carbon (VOC), and 
ammonia (NH3) emissions can affect population exposure to particulate matter air pollution.  As noted in 
Chapter 1, the focus of our analysis is on PM2.5 – both emitted directly from EGUs and formed in 
secondary reactions in the atmosphere – because the most serious adverse health impacts, such as 
premature mortality and chronic bronchitis, are related to PM2.5. 
 

3.1  Modeling Reductions in Ambient PM2.5 Using the S-R Matrix 
 
The great majority of the impact of power plants is on PM2.5 formation, with little change expected in 
more coarse particles.  To estimate the change in PM2.5, the PIE uses the S-R Matrix, which provides an 
estimate of the annual level of PM2.5 in each county in the continental United States. 
 
The S-R Matrix has two basic building blocks: an emissions inventory and transfer coefficients.1  The 
emission inventory has the following pollutants that are relevant to PM2.5 formation: SO2, NOx, direct 
emissions of PM2.5, NH3, and volatile organic carbons (VOCs).  Emissions are estimated for several 
thousand identifiable point sources in the United States, and the inventory includes more diffuse “area” 
emissions, such as from motor vehicles and small point sources.  The S-R matrix has a transfer coefficient 
from each source of emissions (point or area) to each county in the continental United States for four 
pollutants.  There are four matrices: (1) directly emitted, or primary particulate matter, and organics; (2) 
SO2; (3) NOx; and (4) NH3. The first stage of the modeling process is essentially matrix multiplication 
between a matrix of emissions and a matrix of transfer coefficients. 
 
The result of this first stage is an estimate for each county in the United States of the micrograms per 
meter cubed (μg/m3) of the pollutants from each of the point and area sources that can subsequently react 
to form PM2.5: sulfate (from SO2) , nitrate (from NOx), ammonium (NH3), organic aerosols (from VOC), 
and direct PM2.5.  Note that at this stage, we have a very large data set that provides for each county what 
pollutants can from every area and point source.   
  
In the second stage, the S-R Matrix modeling process has a fairly simple air chemistry.  First we sum up 
the ingredients (sulfate, nitrate, ammonium, organic aerosols, and direct PM2.5) to get a total for each 
county.  We then assume that all sulfate forms ammonium sulfate (SO4(NH4)2 ).  To get μg/m3 of 
ammonium sulfate, we just multiply the micrograms of sulfate (SO4) with the ratio of the molecular 
weight of SO4(NH4)2 to the molecular weight of SO4.   
 
To estimate ammonium nitrate (NO3NH4), we calculate the moles of SO4, the available NH4 (before and 
after reacting with SO4), and the available moles of nitrate (NO3).  To calculate the moles of SO4, we 
divide the micrograms of SO4 by the molecular weight of SO4.  Similarly, we estimate the moles of NH4 
before reacting with SO4 by dividing the micrograms of NH4 by the molecular weight of NH4.  Then, for 
every mole of SO4 we will have two moles of NH4 react with it.  If there is not enough NH4, then we 
assume SO4 forms ammonium bisulfate (NH4HSO4) or stays as particulate SO4, and no ammonium 
nitrate would form in this case. 

                                                      
1 Appendix A provides some background on the S-R Matrix. 
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If there is sufficient NH4 to completely react with the SO4, then any remaining NH4 would be free to react 
with NO3.  To calculate the moles of NO3, we divide the micrograms of NO3 by its molecular weight, and 
then divide this number by four.  (This is a seasonal adjustment incorporated in the S-R modeling 
approach.)  The available moles of NH4 can then react with the available moles of NO3:  one mole of NH4 
goes with one mole of NO3 to produce ammonium nitrate (NO3NH4).  To calculate μg/m3 of NO3NH4, we 
multiply the moles of NO3 that have reacted with NH4 with the ratio of the molecular weight of NO3NH4 
to the molecular weight of NO3. 
  
Now with μg/m3 of ammonium sulfate, ammonium bisulfate, SO4, and ammonium nitrate, to calculate 
overall μg/m3 of PM2.5, we added the μg/m3 of organic aerosols and direct PM2.5.  Although this reduced 
form version of air chemistry is simple, peer-reviewed published studies of this approach nevertheless 
suggest that it is reasonably consistent with more complicated air quality models (see: Levy, et al., 2003). 
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4.  Calculating Reductions in Adverse Health Impacts 
 
A reduction in ambient PM2.5 levels is associated with reductions in a number of adverse health effects, or 
“endpoints.”  This chapter discusses the calculation of these reductions in health impacts.  The first 
section covers the choice of epidemiological studies and the development of health impact functions.  The 
second section presents the health impact functions that we use.  Appendix C provides additional details 
on the specific form of the health impact functions, and Appendices D and E describe the health incidence 
rate and population data used in these functions. 
 

4.1  Issues in Selecting Epidemiological Studies and Health Impact 
Functions 
 
This section reviews the steps we performed in selecting concentration-response (C-R) functions and 
developing health impact functions from them.  The first section describes how studies were chosen from 
the epidemiological literature for use in the present analysis.  The second section describes how we chose 
the specific estimated C-R relationships, or models, from among the potentially large number available in 
any given study.  (In any given study, there are often a large number of estimated relationships between 
air pollution and adverse health effects, because the estimated relationship can depend on the number and 
types of pollutants included in the model, among other reasons.)  In the third section, we briefly discuss 
the issue of thresholds in health impact functions. 
 

Study Selection 
 
The health impact functions in the PIE model were prepared by Abt Associates in close consultation with 
EPA and rely on an up-to-date assessment of the published scientific literature to ascertain the 
relationship between particulate matter and adverse human health effects.  We evaluated studies using a 
variety of selection criteria, including: study location and design, the characteristics of the study 
population, and whether the study was peer-reviewed (Table 1).   
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Table 1.  Summary of Considerations Used in Selecting Studies 

Consideration Comments 
Peer reviewed research Peer reviewed research is preferred to research that has not undergone the peer review 

process. 

Study type Among studies that consider chronic exposure (e.g., over a year or longer) prospective 
cohort studies are preferred over cross-sectional studies because they control for important 
individual-level confounding variables that cannot be controlled for in cross-sectional 
studies.  

Study period Studies examining a relatively longer period of time (and therefore having more data) are 
preferred, because they have greater statistical power to detect effects.  More recent 
studies are also preferred because of possible changes in pollution mixes, medical care, 
and life style over time. 

Study size Studies examining a relatively large sample are preferred because they generally have 
more statistical power to detect small magnitude effects.  A large sample can be obtained 
in several ways, either through a large population, or through repeated observations on a 
smaller population, e.g. through a symptom diary recorded for a panel of asthmatic 
children. 

Study location U.S. studies are more desirable than non-U.S. studies because of potential differences in 
pollution characteristics, exposure patterns, medical care system, population behavior and 
life style. 

Measure of PM For this analysis, C-R functions based on PM2.5 are preferred to those based on PM10 
(particulate matter less than 10 microns in aerodynamic diameter) because reductions in 
emissions from diesel engines are expected to reduce fine particles and not have much 
impact on coarse particles.  

Economically valuable 
health effects 

Some health effects, such as changes in forced expiratory volume and other technical 
measurements of lung function, are difficult to value in monetary terms.  These health 
effects are therefore not quantified in this analysis. 

Non-overlapping 
endpoints 

Although the benefits associated with each individual health endpoint may be analyzed 
separately, care must be exercised in selecting health endpoints to include in the overall 
benefits analysis because of the possibility of double counting of benefits.  Including 
emergency room visits in a benefits analysis that already considers hospital admissions, 
for example, will result in double counting of some benefits if the category "hospital 
admissions" includes emergency room visits. 

 
 

Model Selection 
 
In many epidemiological studies of air pollution and health, researchers estimate and present numerous 
single pollutant and multi-pollutant models for the same pollutant and health endpoint.  These models 
may differ from each other in a number of characteristics, including: the functional form of the model, the 
covariates included in the model, the pollutant exposure metric, the lag structure, and the study 
population.   
 
For the purposes of estimating health benefits associated with pollutant changes, it is neither realistic nor 
advantageous to include every model presented in each study.  However, it is important that a relatively 
objective process be used to select from among models.  Described below are the criteria that were used 
as guidance in the selection of a particular model from among several models presented in a study.  It is 
not possible in all cases to select a model using a completely objective and mechanical process.  In many 
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cases, professional judgment and an understanding of the study context are necessary as well to select the 
most appropriate models.  Table 2 summarizes the selection criteria that we used. 
 
Table 2.  Description of Selection Criteria  

Selection Criteria Description 

Goodness-of-fit statistics If an appropriate measure of goodness of fit (i.e., how well the model fit the data) 
is reported for each of several models in a study, then this measure may be used 
as the basis on which to select a model. 

Best captures distributed lag Select the model that appears to best capture a distributed lag effect, as described 
below.  If multiple single-lag models and/or moving average models are 
specified, select the model with the largest effect estimate, all else equal. 

Best set of control variables Select the model which includes temporal variables (i.e. season, weather patterns, 
day of the week) and other known non-pollutant confounders, all else equal.  
Select the model which uses the most sophisticated methods of capturing the 
relationship between these variables and the dependent variable (e.g., affords the 
most flexibility in fitting possible nonlinear trends). 

Useful for health effects 
modeling 

The model must be in a form that is useful for health effects modeling (e.g., the 
pollutant variable should be a continuous variable rather than a categorical 
variable). 

Sample size Select the model estimated with the larger sample size, all else equal. 
 
 

Distributed Lag Effect 
 
The question of lags and the problems of correctly specifying the lag structure in a model has been 
discussed extensively (U.S. EPA, 2002, Section 8.4.4).  In many time-series studies, after the basic model 
is fit (before considering the pollutant of interest), several different lags are typically fit in separate single-
lag models and the most significant lag is chosen.  The 2002 draft PM CD notes that “while this practice 
may bias the chance of finding a significant association, without a firm biological reason to establish a 
fixed pre-determined lag, it appears reasonable” (U.S. EPA, 2002, p. 8-237).   
 
There is recent evidence (Schwartz, 2000) that the relationship between PM and health effects may best 
be described by a distributed lag (i.e., the incidence of the health effect on day n is influenced by PM 
concentrations on day n, day n-1, day n-2 and so on).  If this is the case, a model that includes only a 
single lag (e.g., a 0-day lag or a 1-day lag) is likely to understate the total impact of PM.  The 2002 draft 
PM CD makes this point, noting that “if one chooses the most significant single lag day only, and if more 
than one lag day shows positive (significant or otherwise) associations with mortality, then reporting a 
RR [relative risk] for only one lag would also underestimate the pollution effects” (U.S. EPA, 2002, p. 8-
241).  The same may hold true for other pollutants that have been associated with various health effects. 
 
Several studies report similar models with different lag structures.  For example, Moolgavkar (2000a) 
studied the relationship between air pollution and respiratory hospital admissions in three U.S. 
metropolitan areas.  The author reports models with PM lagged from zero to five days. Since the lagging 
of PM was the only difference in the models and the relationship is probably best described using a 
distributed lag model, any of single-lag effect estimates are likely to underestimate the full effect.  
Therefore, we selected the model with the largest effect estimate. 
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Thresholds 
 
C-R functions estimated using data from clinical (chamber) or epidemiological studies may be estimated 
with or without explicit thresholds. Air pollution levels below a specified threshold are assumed to have 
no associated adverse health effects. When a threshold is not assumed, as is often the case in 
epidemiological studies, any exposure level is assumed to pose a non-zero risk of response to at least one 
segment of the population. 
 
Based on the recent literature, we assume there are no thresholds for modeling PM2.5-related health 
effects.  This is supported by the National Research Council (2002) in its review of methods for 
estimating the public health benefits of air pollution regulations.  They concluded that there is no 
evidence for any departure from linearity in the observed range of exposure to PM10 or PM2.5, nor is there 
any indication of a threshold.  They cite the weight of evidence available from both short- and long-term 
exposure models and the similar effects found in cities with low and high ambient concentrations of PM. 
 
Moreover, USEPA recently completed an “expert elicitation” analysis in which it elicited opinions from 
12 experts (in epidemiology, toxicology, and medicine) on the nature of this relationship (see: IEc, 2006).  
The experts were asked how likely they thought it is that the relationship between PM2.5 and mortality is 
causal, and if it is causal, what is the functional form of the C-R relationship, including whether there is a 
threshold.  Eleven of the twelve experts thought that, although each individual may have a threshold, 
there is insufficient empirical evidence for a threshold for the population, which is the entity of interest in 
the C-R function.  One expert did include the possibility of a population threshold, assigning a probability 
of 50 percent to there being a threshold and, if there is a threshold, an 80 percent chance that it is less than 
or equal to 5 µg/m3, and a 20 percent chance that it is between 5 and 10 µg/m3. 
 
While we find the evidence for thresholds to be limited, we nevertheless provide results both with and 
without a threshold assumption.  To be consistent with some recent EPA analyses (e.g., U.S. EPA, 2008), 
we assume a threshold of 10 ug/m3, and adjust the health impact coefficients to reflect this threshold.  
Appendix C discusses this adjustment process. 
 

4.2  Summary of Health Impact Functions Used in this Analysis 
 
This Chapter describes individual health effects associated with PM2.5 and the functions used to quantify 
the expected number of cases of various health effects avoided as a result of eliminating emissions from 
new EGUs.  Table 3 presents the PM-related health endpoints included in our analysis.   
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Table 3.  Epidemiological Studies Used to Estimate Adverse Health Impacts of PM2.5 

Endpoint Author Age 
Mortality, All Cause Pope et al. (2002) 30-99 
Mortality, All Cause Laden et al (2006) 25-99 
Mortality, All Cause Woodruff et al. (1997) Infant 
Chronic Bronchitis Abbey et al. (1995c) 27-99 
Acute Myocardial Infarction, Nonfatal Peters et al. (2001) 18-99 
HA, All Cardiovascular (less Myocardial Infarctions) Moolgavkar (2000b) 18-64 
HA, All Cardiovascular (less Myocardial Infarctions) Moolgavkar (2003) 65-99 
HA, Congestive Heart Failure Ito (2003) 65-99 
HA, Dysrhythmia Ito (2003) 65-99 
HA, Ischemic Heart Disease (less Myocardial Infarctions) Ito (2003) 65-99 
HA, Pneumonia Ito (2003) 65-99 
HA, Chronic Lung Disease (less Asthma) Moolgavkar (2000a) 18-64 
HA, Chronic Lung Disease Ito (2003) 65-99 
HA, Chronic Lung Disease Moolgavkar (2003) 65-99 
HA, Asthma Sheppard (2003) 0-64 
Emergency Room Visits, Asthma Norris et al. (1999) 0-17 
Minor Restricted Activity Days Ostro and Rothschild (1989) 18-64 
Acute Bronchitis Dockery et al. (1996) 8-12 
Work Loss Days Ostro (1987) 18-64 
Lower Respiratory Symptoms Schwartz and Neas (2000) 7-14 
Asthma Exacerbation, Cough Ostro et al. (2001) 6-18 
Asthma Exacerbation, Shortness of Breath Ostro et al. (2001) 6-18 
Asthma Exacerbation, Wheeze Ostro et al. (2001) 6-18 
Upper Respiratory Symptoms Pope et al. (1991) 9-11 
Asthma Exacerbation, Cough Vedal et al. (1998) 6-18 

 
 

Premature Mortality 
 
Health researchers have consistently linked air pollution, especially PM, with excess mortality.  Although 
a number of uncertainties remain to be addressed, a substantial body of published scientific literature 
recognizes a correlation between elevated PM concentrations and increased mortality rates.   
 
Both long- and short-term exposures to ambient levels of particulate matter air pollution have been 
associated with increased risk of premature mortality.  It is clearly an important health endpoint because 
of the size of the mortality risk estimates, the serious nature of the effect itself, and the high monetary 
value ascribed to avoiding mortality risk.  Because of the importance of this endpoint and the 
considerable uncertainty among economists and policymakers as to the appropriate way to estimate PM-
related mortality risks, this section discusses some of the issues surrounding the estimation of premature 
mortality associated with PM. 
 
Particulate matter has been linked with premature mortality in adults (Laden, et al., 2006;Jerrett, et al., 
2005;Pope, et al., 2002;Katsouyanni, et al., 2001;Samet, et al., 2000b) as well as infants (Bobak and 
Leon, 1999;Conceicao, et al., 2001;Loomis, et al., 1999;Woodruff, et al., 2008;Woodruff, et al., 1997) in 
multiple studies throughout the world.  To estimate premature mortality in adults, we used an 
epidemiological analysis of the American Cancer Society cohort by Pope et al. (2002) and analysis of the 



Abt Associates Inc.  12      July 2010 

Six-City cohort by Laden et al (2006).  To estimate premature mortality in infants, we used a study by 
Woodruff et al. (1997). 
 

Chronic Bronchitis 
 
Chronic bronchitis is characterized by mucus in the lungs and a persistent wet cough for at least three 
months a year for several consecutive years, and affects roughly five percent of the U.S. population 
(American Lung Association, 2002b, Table 4).  There are a limited number of studies that have estimated 
the impact of air pollution on new incidences of chronic bronchitis.  Schwartz (1993) and Abbey et al. 
(1995c) provide evidence that long-term PM exposure can give rise to the development of chronic 
bronchitis in the U.S.  A reduction in power plant emissions primarily reduces PM2.5, so this analysis uses 
the Abbey et al study, because it is the only study focusing on the relationship between PM2.5 and new 
incidences of chronic bronchitis. 
 

Non-Fatal Myocardial Infarction (Heart Attack) 
 
Non-fatal heart attacks have been linked with short-term exposures to PM2.5 in the U.S. (Peters, et al., 
2001) and other countries (Poloniecki, et al., 1997). We used the C-R function reported in Peters et al. 
(2001), the only available U.S. study to provide an estimate specifically for PM2.5-related heart attacks.  
Other studies, such as Samet et al. (2000a) and Moolgavkar et al. (2000b), reported a consistent 
relationship between all cardiovascular hospital admissions, including for non-fatal heart attacks, and PM.  
However, they did not focus specifically on heart attacks.  Given the lasting impact of a heart attack on 
longer-term health costs and earnings, it is useful to provide a separate estimate for non-fatal heart attacks 
based on the single available U.S. C-R function. 
 
The finding of a specific impact on heart attacks is consistent with hospital admission and other studies 
showing relationships between fine particles and cardiovascular effects both within and outside the U.S.   
These studies provide a weight of evidence for this type of effect.  Several epidemiological studies (Gold, 
et al., 2000;Liao, et al., 1999;Magari, et al., 2001) have shown that heart rate variability (an indicator of 
how much the heart is able to speed up or slow down in response to momentary stresses) is negatively 
related to PM levels.  Lack of heart rate variability is a risk factor for heart attacks and other coronary 
heart diseases (Dekker, et al., 2000;Liao, et al., 1997;Tsuji, et al., 1996).  As such, the reduction in heart 
rate variability due to PM is consistent with an increased risk of heart attacks. 
 

Cardiovascular and Respiratory Hospital Admissions 
 
Respiratory and cardiovascular hospital admissions are the two broad categories of hospital admissions 
that have been related to PM exposure.  Although the benefits associated with respiratory and 
cardiovascular hospital admissions are estimated separately in the analysis, the methods used to estimate 
changes in incidence and to value those changes are the same for both broad categories of hospital 
admissions. 
 
Due to the availability of detailed hospital admission and discharge records, there is an extensive body of 
literature examining the relationship between hospital admissions and air pollution.  Because of this, we 
pooled some of the hospital admission endpoints, using the results from a number of studies.   We used a 
fixed/random effects approach, such as was used in the recent NonRoad Diesel Analysis (Abt Associates 
Inc., 2003). However, there is no single correct pooling procedure. 
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To estimate avoided cardiovascular hospital admissions associated with reduced PM2.5, we use studies by 
Moolgavkar (2000b; 2003) and Ito (2003).  There are additional published studies showing a statistically 
significant relationship between PM10 and cardiovascular hospital admissions.  However, given that the 
control option we are analyzing is expected to reduce primarily PM2.5, we have chosen to focus on the two 
studies focusing on PM2.5.  Both of these studies estimated C-R functions for populations over 65, 
allowing us to pool the C-R functions for this age group.  Only Moolgavkar (2000b) estimated a separate 
C-R function for populations age 20 to 64.  Total cardiovascular hospital admissions are thus estimated as 
the sum of the pooled estimate for populations over 65 and the single study estimate for populations age 
20 to 64.   
 
Cardiovascular hospital admissions include admissions for myocardial infarctions (MIs).  In order to 
avoid double counting benefits from reductions in MI when applying the C-R function for cardiovascular 
hospital admissions, we first adjusted the baseline cardiovascular hospital admissions to remove 
admissions for myocardial infarction.  
 
To estimate total avoided respiratory hospital admissions, we use C-R functions for several respiratory 
causes, including chronic obstructive pulmonary disease (COPD), pneumonia, and asthma.  As with 
cardiovascular admissions, there are additional published studies showing a statistically significant 
relationship between PM10 and respiratory hospital admissions.  However, we use only those focusing on 
PM2.5.  Both Moolgavkar (2000b; 2003) and Ito (2003) estimated C-R functions for COPD in populations 
over 65, allowing us to pool the C-R functions for this group.  Only Moolgavkar  (2000a) estimated a 
separate C-R function for populations 20 to 64.  Total COPD hospital admissions are thus the sum of the 
pooled estimate for populations over 65 and the single study estimate for populations age 20 to 64.   In 
addition, Sheppard et al (1999) estimated a C-R function for asthma hospital admissions for populations 
under age 65.  Total avoided PM-related respiratory hospital admissions is the sum of COPD, pneumonia, 
and asthma admissions. 
 

Asthma-Related Emergency Room (ER) Visits 
 
To estimate the effects of PM air pollution reductions on asthma-related ER visits, we use the C-R 
function based on a study of children 18 and under by Norris et al. (1999).  Another study, Schwartz et al. 
(1993), examined a broader age group (under 65) but focused on PM10 rather than PM2.5.  Because 
children tend to have higher rates of hospitalization for asthma relative to adults under 65, we will likely 
capture the majority of the impact of PM2.5 on asthma ER visits in populations under 65, although there 
may still be significant impacts in the adult population under 65 but over 18.   
  
Initially we were concerned about double-counting the benefits from reducing both hospital admissions 
and ER visits.  However, our estimates of hospital admission costs do not include the costs of admission 
to the ER, so we can safely estimate both hospital admissions and ER visits. 
 

Acute Bronchitis 
 
Around five percent of U.S. children between ages five and seventeen experience episodes of acute 
bronchitis annually (Adams and Marano, 1995).  Acute bronchitis is characterized by coughing, chest 
discomfort, slight fever, and extreme tiredness, lasting for a number of days.  According to the 
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MedlinePlus medical encyclopedia1, with the exception of cough, most acute bronchitis symptoms abate 
within 7 to 10 days.  We estimated the incidence of episodes of acute bronchitis in children between the 
ages of 8 and 12 using a C-R function reported in Dockery et al. (1996).   
 
Dockery et al. (1996) examined the relationship between PM and other pollutants and reported rates of 
asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12 living in  
24 communities in the U.S. and Canada.  Health data were collected in 1988-1991, and single-pollutant 
models were used in the analysis to test a number of measures of particulate air pollution.  Dockery et al. 
found that annual level of sulfates and particle acidity were significantly related to bronchitis, and PM2.5 
and PM10 were marginally significantly related to bronchitis. 
 

Upper Respiratory Symptoms (URS) 
 
Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a variety of 
minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley 
from December 1989 through March 1990.  The children in the Pope et al. study were asked to record 
respiratory symptoms in a daily diary, and the daily occurrences of upper respiratory symptoms (URS) 
and lower respiratory symptoms (LRS), as defined below, were related to daily PM10 concentrations.  
Pope et al. describe URS as consisting of one or more of the following symptoms:  runny or stuffy nose; 
wet cough; and burning, aching, or red eyes.   Levels of ozone, NO2, and SO2 were reported low during 
this period, and were not included in the analysis. 
 
The sample in this study is relatively small and is most representative of the asthmatic population, rather 
than the general population.  The school-based subjects (ranging in age from 9 to 11) were chosen based 
on “a positive response to one or more of three questions: ever wheezed without a cold, wheezed for 3 
days or more out of the week for a month or longer, and/or had a doctor say the ‘child has asthma’ (Pope, 
et al., 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were receiving treatment 
for asthma and were referred by local physicians.  Regression results for the school-based sample (Pope, 
et al., 1991, Table 5) show PM10 significantly associated with both upper and lower respiratory 
symptoms.  The patient-based sample did not find a significant PM10 effect.  The results from the school-
based sample are used here. 
 

Lower Respiratory Symptoms (LRS) 
 
Lower respiratory symptoms include symptoms such as cough, chest pain, phlegm, and wheeze.  To 
estimate the link between PM2.5 and LRS, we used a study by Schwartz and Neas (2000).  Schwartz and 
Neas used logistic regression to link LRS in children with a variety of pollutants, including PM2.5, sulfate 
and H+ (hydrogen ion).  Children were selected for the study if they were exposed to indoor sources of air 
pollution: gas stoves and parental smoking.  A total of 1,844 children were enrolled in a year-long study 
that was conducted in different years (1984 to 1988) in six cities.  The students were in grades two 
through five at the time of enrollment in 1984.  By the completion of the final study, the cohort would 
then be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14. 
 

                                                      
1    See http://www.nlm.nih.gov/medlineplus/ency/article/000124.htm, accessed January 2002. 
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Minor Restricted Activity Days (MRADs) 
 
Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted activity 
days (MRADs) in a national sample of the adult working population, ages 18 to 65, living in metropolitan 
areas.   
 

Work-Loss Days (WLDs)  
 
Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted activity 
days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working 
population, ages 18 to 65, living in metropolitan areas.  The annual national surveys used in this analysis 
were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were significantly 
linked to work-loss days, RADs, and RRADs; however there was some year-to-year variability in the 
results.  Separate coefficients were developed for each year in the analysis (1976-1981); these coefficients 
were pooled.  The coefficient used in the health impact function used here is a weighted average of the 
coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight. 
 

Asthma Exacerbations 
 
We pool the results of studies by Ostro et al. (2001) and Vedal et al. (1998) to derive an estimate of lower 
respiratory symptoms in asthmatics.  In addition to the lower respiratory estimate, we include an upper 
respiratory estimate based on a study by Pope et al. (1991). 
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5.  Economic Value of Reducing Adverse Health 
Impacts 
 
This Chapter discusses some issues that arise in valuing avoided adverse health effects and then provides 
a summary table of the values that we use.  Appendix F provides additional details on the individual 
effects and the methods we used. 
 

5.1  Issues in Valuing Avoided Adverse Health Effects 
 
This section discusses a number of issues that arise in valuing changes in health effects.  We first discuss 
the use of ex-ante economic values.  Second, we discuss updating our benefit estimates to account for 
inflation.  Third, we discuss the possibility that as income changes, willingness-to-pay (WTP) would also 
change.  Finally, we describe the derivation of the present discounted value of future benefits, such as in 
the case of premature mortality that may occur at some point in the future, relative to a reduction in 
emissions. 
 

Ex-Ante Economic Values 
 
The appropriate economic value for a change in a health effect depends on whether the health effect is 
viewed ex ante (before the effect has occurred) or ex post (after the effect has occurred). Reductions in 
ambient concentrations of air pollution generally lower the risk of future adverse health affects by a small 
amount for a large population. The appropriate economic measure is therefore ex ante WTP for changes 
in risk. However, epidemiological studies generally provide estimates of the relative risks of a particular 
health effect avoided due to a reduction in air pollution. A convenient way to use this data in a consistent 
framework is to convert probabilities to units of avoided statistical incidences. This measure is calculated 
by dividing individual WTP for a risk reduction by the related observed change in risk.  
 
For example, suppose a measure is able to reduce the risk of premature mortality from 2 in 10,000 to 1 in 
10,000 (a reduction of 1 in 10,000). If individual WTP for this risk reduction is $100, then the WTP for 
an avoided statistical premature mortality amounts to $1 million ($100/0.0001 change in risk).  Using this 
approach, the size of the affected population is automatically taken into account by the number of 
incidences predicted by epidemiological studies applied to the relevant population.  The same type of 
calculation can produce values for statistical incidences of other health endpoints. 
 
For some health effects, such as hospital admissions, WTP estimates are generally not available. In these 
cases, we use the cost of treating or mitigating the effect. For example, for the valuation of hospital 
admissions EPA used the avoided medical costs as an estimate of the value of avoiding the health effects 
causing the admission.  These COI estimates generally understate the true value of reductions in risk of a 
health effect, because, while they reflect the direct expenditures related to treatment, they omit the value 
of avoiding the pain and suffering from the health effect itself. 
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Updating Values for Inflation 
 
The valuation functions were originally developed based on year 2000 $.  To allow for the effect of 
inflation, we have adjusted these values to reflect prices in 2006 $. Because some functions are based on 
willingness to pay to avoid illness, while others are based on cost of illness and/or lost wages, three 
different inflation indices are used. These are the All Goods Index, the Medical Cost Index, and the Wage 
Index, respectively.  Table 4 summarizes the values we used. 
 
Table 4.  Inflators and Health Effects Endpoints for Each Inflation Index 

Index Inflator from 2000 $ to 2006 $ Health Effects Endpoints 

All Goods Index 1.171 Acute Bronchitis 
Asthma Exacerbation 
Chronic Bronchitis 
Lower Respiratory Symptoms 
Mortality 
Minor Restricted  Activity Days 
Upper Respiratory Symptoms 

Medical Cost Index 1.289 Emergency Room Visits 
Hospital Admissions 

Wage Index 1.191 Acute Myocardial Infarction 
Hospital Admissions 
School Loss Days 
Work Loss Days 

 

 

Growth in Unit Values Reflecting Growth in National Income 
 
The unit value estimates reflect expected growth in real income over time. This is consistent with 
economic theory, which argues that WTP for most goods (such as health risk reductions) will increase if 
real incomes increase. There is substantial empirical evidence that the income elasticity of WTP for health 
risk reductions is positive, although there is uncertainty about its exact value (and it may vary by health 
effect).  Although one might assume that the income elasticity of WTP is unit elastic (e.g., a 10 percent 
higher real income level implies a 10 percent higher WTP to reduce health risks), empirical evidence 
suggests that income elasticity is substantially less than one and thus relatively inelastic. As real income 
rises, the WTP value also rises but at a slower rate than real income.  
 
The effects of real income changes on WTP estimates can influence benefits estimates in two ways: 
through real income growth between the year a WTP study was conducted and the year for which benefits 
are estimated, and through differences in income between study populations and the affected populations 
at a particular time.  Following the analysis in the CAIR regulatory impact assessment, we have focused 
on the former. 
 
The income adjustment in PIE follows the approach used by EPA (2005b, p. 4-17), who adjusted the 
valuation of human health benefits upward to account for projected growth in real U.S. income. Faced 
with a dearth of estimates of income elasticities derived from time-series studies, EPA applied estimates 
derived from cross-sectional studies.1   The available income elasticities suggest that the severity of a 
health effect is a primary determinant of the strength of the relationship between changes in real income 
                                                      
1 Details of the procedure can be found in Kleckner and Neumann (1999). 
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and changes in WTP.  As a result, EPA (2005b, p. 4-18) used different elasticity estimates to adjust the 
WTP for minor health effects, severe and chronic health effects, and premature mortality (Table 5). 
 
In addition to elasticity estimates, projections of real gross domestic product (GDP) and populations from 
1990 to 200 are needed to adjust benefits to reflect real per capita income growth. For consistency with 
the emissions and benefits modeling, EPA (2005b, p. 4-17) used national population estimates for the 
years 1990 to 1999 based on U.S. Census Bureau estimates (Hollman, et al., 2000). These population 
estimates are based on an application of a cohort-component model applied to 1990 U.S. Census data 
projections (U.S. Bureau of the Census, 2000). For the years between 2000 and 2010, EPA applied 
growth rates based on the U.S. Census Bureau projections to the U.S. Census estimate of national 
population in 2000.  EPA used projections of real GDP provided in Kleckner and Neumann (1999) for the 
years 1990 to 2010, and projections of real GDP (in chained 1996 dollars) provided by Standard and 
Poor’s (2000) for the years 2010 to 2020. 
 
Using the method outlined in Kleckner and Neumann (1999) and the population and income data 
described above, EPA (2005b, p. 4-18) calculated WTP adjustment factors for each of the elasticity 
estimates.  Benefits for each of the categories (minor health effects, severe and chronic health effects, 
premature mortality, and visibility) are adjusted by multiplying the unadjusted benefits by the appropriate 
adjustment factor.  Table 5 lists the estimated adjustment factors. 
 
 

Table 5.  Elasticity Values and Adjustment Factors Used to Account for National Income Growth 

Benefit Category Central Elasticity 
Estimate 

Adjustment 
Factor for 2010 

Adjustment 
Factor for 2015 

Adjustment 
Factor for 2020 

Minor Health Effect 0.14 1.034 1.052 1.066 

Severe & Chronic Health Effects 0.45 1.113 1.176 1.229 

Premature Mortality 0.40 1.100 1.155 1.201 
 
 

Note that because of a lack of data on the dependence of COI on income, and a lack of data on projected 
growth in average wages, no adjustments are made to benefits estimates based on the COI approach or to 
work loss days and worker productivity benefits estimates. This lack of adjustment would tend to result in 
an under-prediction of benefits in future years, because it is likely that increases in real U.S. income 
would also result in increased COI (due, for example, to increases in wages paid to medical workers) and 
increased cost of work loss days and lost worker productivity (reflecting that if worker incomes are 
higher, the losses resulting from reduced worker production would also be higher). 

 

Present Discounted Value of Avoiding Future Mortality 
 
The delay, or lag, between changes in PM exposures and changes in mortality rates is not precisely 
known.  The current scientific literature on adverse health effects, such as those associated with PM (e.g., 
smoking-related disease), and the difference in the effect size estimated in chronic exposure studies 
versus daily mortality studies, suggests that it is likely that not all cases of avoided premature mortality 
associated with a given incremental reduction in PM exposure would occur in the same year as the 
exposure reduction. 
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Following EPA analyses (U.S. EPA, 2006, p. 5-21), we assume a 20-year lag structure, with 30 percent of 
premature deaths occurring in the first year, 50 percent occurring evenly over years 2 to 5 after the 
reduction in PM2.5, and 20 percent occurring evenly over years 6 to 20 after the reduction in PM2.5. It 
should be noted that the selection of a 20-year lag structure is not directly supported by any PM-specific 
literature.  Rather, it is intended to be a best guess at the appropriate time distribution of avoided cases of 
PM-related mortality.  As noted by EPA, the distribution of deaths over the latency period is intended to 
reflect the contribution of short-term exposures in the first year, cardiopulmonary deaths in the 2- to 5-
year period, and long-term lung disease and lung cancer in the 6- to 20-year period. Finally, it is 
important to keep in mind that changes in the lag assumptions do not change the total number of 
estimated deaths but rather the timing of those deaths. 
 
Specifying the lag is important because people are generally willing to pay more for something now than 
for the same thing later.  They would, for example, be willing to pay more for a reduction in the risk of 
premature death in the same year as exposure is reduced than for that same risk reduction to be received 
the following year.  This time preference for receiving benefits now rather than later is expressed by 
discounting benefits received later.  The exact discount rate that is appropriate (i.e., that represents 
people’s time preference) is a topic of much debate.  EPA has typically used a discount rate of three 
percent, and we use a three percent rate for this analysis in conjunction with the 20-year lag structure 
described above.  
 

5.2  Summary of Valuation Functions Used in this Analysis 
 
Table 6 presents a summary of the economic values that we use to estimate the benefits of reducing 
adverse health impacts.  Appendix F presents details on the derivations of these values. 
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Table 6.  Unit Values for Economic Valuation of Health Endpoints by Income Year (2006 $) 

   Unit Value  
Health Endpoint Age Range 2010 2015 2020 
Mortality 0 - 99 $7,300,000 $7,700,000 $8,000,000 
Chronic Bronchitis 27 - 99 $440,000 $470,000 $490,000 
Acute Myocardial Infarction, Nonfatal 0 - 24 $85,000 $85,000 $85,000 
Acute Myocardial Infarction, Nonfatal 25 - 44 $96,000 $96,000 $96,000 
Acute Myocardial Infarction, Nonfatal 45 - 54 $100,000 $100,000 $100,000 
Acute Myocardial Infarction, Nonfatal 55 - 64 $180,000 $180,000 $180,000 
Acute Myocardial Infarction, Nonfatal 65 - 99 $85,000 $85,000 $85,000 
HA, All Cardiovascular (less AMI) 18 - 64 $29,000 $29,000 $29,000 
HA, All Cardiovascular (less AMI) 65 - 99 $27,000 $27,000 $27,000 
HA, Asthma 0 - 64 $10,000 $10,000 $10,000 
HA, Chronic Lung Disease 65 - 99 $17,000 $17,000 $17,000 
HA, Chronic Lung Disease (less Asthma) 18 - 64 $16,000 $16,000 $16,000 
HA, Congestive Heart Failure 65 - 99 $20,000 $20,000 $20,000 
HA, Dysrhythmia 65 - 99 $20,000 $20,000 $20,000 
HA, Ischemic Heart Disease (less AMI) 65 - 99 $33,000 $33,000 $33,000 
HA, Pneumonia 65 - 99 $23,000 $23,000 $23,000 
Asthma ER Visits 0 - 17 $370 $370 $370 
Acute Bronchitis 7 - 14 $430 $440 $440 
Lower Resp. Symptoms 9 - 11 $19 $19 $19 
Upper Resp. Symptoms 18 - 64 $30 $30 $31 
MRAD 18 - 64 $61 $62 $63 
Work Loss Days 18 - 99 ** ** ** 
Asthma Exacerbation, Cough 6 - 18 $52 $53 $53 
Asthma Exacerbation, Shortness of Breath 6 - 18 $52 $53 $53 
Asthma Exacerbation, Wheeze 6 - 18 $52 $53 $53 

NOTE: Numbers rounded to two significant digits.   
* Mortality value after adjustment for 20-year lag. 
** County-specific median daily wage. 
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Appendix A: Description of Source-Receptor Matrix 
and Emissions Data 
 
PIE estimates particulate matter levels using the Phase II source-receptor (S-R) matrix.  The model is 
desirable because it is flexible, and can be used to quickly estimate the impact of emission changes on 
ambient PM2.5 levels.  The S-R matrix consists of fixed transfer coefficients that reflect the relationship 
between annual average PM2.5 concentration values at a single receptor in each county (a hypothetical 
monitor located at the county centroid) and the contribution by PM2.5 species to this concentration from 
each emission source (E.H. Pechan & Associates Inc., 1994).    

Levy et al (Levy, et al., 2003) found that an earlier version of the S-R Matrix compared relatively well 
with the performance of CALPUFF, a comparatively sophisticated model often used in risk assessments.  
Using the emission impacts from seven power plants in northern Georgia, Levy et al reported that the two 
models yielded generally similar results for sulfates or primary PM2.5, with somewhat greater differences 
for nitrates.  However, they carefully noted that this result may differ depending on the location of the 
emissions, as temperature and humidity are important considerations in the formation of ambient 
particles.1   

The following sections summarize the development of the S-R matrix and the steps taken to apply the 
matrix to derive changes in air quality resulting from changes in emissions. 

 

A.1  Development of S-R Matrix Transfer Coefficients 
 
The S-R matrix is based on the Climatological Regional Dispersion Model (CRDM), which uses 
assumptions similar to the Industrial Source Complex Short Term model (ISCST3), an EPA-
recommended short range Gaussian dispersion model (U.S. EPA, 1995).  The CRDM incorporates terms 
for wet and dry deposition of primary and secondary species that constitute PM2.5 and uses meteorological 
summaries (annual average mixing heights and joint frequency distributions of wind speed and direction) 
from 100 upper air meteorological sites throughout North America. This analysis employs meteorological 
data collected in 1990. 

Relative to more sophisticated and resource-intensive three-dimensional modeling approaches, the 
CRDM does not fully account for all the complex chemical interactions that take place in the atmosphere 
in the secondary formation of PM. Instead it relies on more simplistic species dispersion–transport 
mechanisms supplemented with chemical conversion at the receptor location. 

The CRDM uses Turner’s sector-average approach (Turner, 1970), a probabilistic method in which 
relative frequencies of occurrence of combinations of wind and stability conditions at the emissions 
source are used to calculate the relative frequencies of transport in various sectors. This method is 
recommended for the estimation of long-term average pollutant concentrations (E.H. Pechan & 
Associates Inc., 1997).  

The pollutant concentration in a destination sector is estimated as follows: 
 

                                                      
1  Note that the version of the S-R Matrix used in PIE differs in some respects from the version tested by Levy et al 

(2003). 
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where: 
 

)(rC j  = atmospheric concentration in destination sector j at distance r 

)(rQ  = pollutant mass flux at distance r 

y  = sector width at distance r 

kjif ,,  = joint frequency of wind speed class i, wind direction j, and stability category k 

kz ,σ
 = vertical diffusion coefficient for stability category k 

iu  = wind speed for wind class i 

H  = effective stack height of emissions source (= 0 for ground-level sources) 

 

The sector width is calculated as: 
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Primary emissions from a county are assumed to always impact the county source county itself and are 
evenly distributed over a square with the same area as the county. A simple box model is used for each 
combination of wind speed and stability category. The vertical diffusion coefficient, σz, is then calculated 
at a downwind distance corresponding to the side of the square.2  These assumptions are necessary since 
the spatial variation of emissions within a county cannot be provided for a national scale model.3  

Additional adjustments are made to ensure a consistent distribution of pollutant species among areas in 
close proximity to the emissions source. Receptors at a distance less than the square root of the source 
area are assumed to receive the same concentration of pollutants as the source area. In addition, the 
destination sector width is constrained to be at least equal to the square root of the source area. 

Equation (1) is applicable to both point and area sources, either ground-level or elevated, and results in a 
Gaussian distribution of pollutant mass in the vertical dimension. However, for long-range transport, 
emissions are distributed uniformly in the vertical between the top of the mixed layer and the ground. 
                                                      
2 The vertical diffusion coefficient σz was calculated using a subroutine from EPA's ISC3 model.  Atmospheric 

stabilities were assumed to be C class (slightly unstable) during the day and E class (slightly stable) at night.  
However, for wind speeds in excess of 6 m/s, stability was assumed to be neutral (class D). 

3 Actual measured concentrations would be expected to be higher than those modeled with these assumptions for a 
monitor located in, or generally downwind from, a portion of the county with emission densities much higher than 
the county average.  On the other hand, concentrations would be expected to be lower if a monitor is located at the 
prevailing upwind edge of the county or in an area of relatively low emission density.   
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This occurs when the vertical diffusion parameter, σz , is equal to the height of the mixed layer, hm. For 
such long-range situations, the sector–average limited mixing model of Turner (1970) estimates pollutant 
concentrations at a downward distance r from the source as: 
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The mass flux of a directly emitted primary species at distance r from the source is a function of the 
material initially emitted, the amount chemically converted to a secondary pollutant, and the amount 
deposited by wet and dry processes during the period of transport (time t) from the emission point to the 
receptor. This is calculated by solving the relevant differential equation(Latimer, 1993): 
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where: 
 

)(tQp  = primary pollutant mass flux at transport time t 

0Q  = initial emission rate 

ck  = pseudo-first-order rate constant for chemical conversion of the primary species to the 
secondary species 

pk
 = 

pseudo-first-order rate constant for deposition of primary species, equal to the sum of 

the dry and wet deposition rate constants ( pwpd kk +
) 

t  = transport time 

 

The mass flux of secondary pollutants is dependent upon the fraction of the primary species that is 
chemically converted in the atmosphere to the secondary species and the amount of the secondary species 
that is deposited by wet and dry deposition processes during the transport time t from the stack to the 
downwind receptor point at distance r.  This is also calculated by solving the relevant differential 
equation(Latimer, 1993): 
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where: 
 

)(tQs  = mass flux of the secondary species at transport time t 
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0Q  = initial emission rate 

ck  = pseudo-first-order rate constant for chemical conversion of the primary species to the 
secondary species 

pk
 = 

pseudo-first-order rate constant for deposition of primary species, equal to the sum of 

the dry and wet deposition rate constants ( pwpd kk +
) 

sk  = 
pseudo-first-order rate constant for deposition of secondary species, equal to the sum of 

the dry and wet deposition rate constants ( swsd kk + ) 

t  = transport time 

 

The model parameters used to estimate mass flux are detailed in Table 7.  Note that the pseudo-first-order 
rate constant for deposition, kp, is estimated from the dry and wet deposition velocities by dividing them 
by the mixing height (hm).   

 
Table 7.  Pollutant-specific Model Parameters 

 PM2.5, SOA SO2
 * NO2 NH3 

Chemical Conversion Rate, kc 
(%/hr) 

[RH = relative humidity (%)] 

0 0.5 if RH < 40 

1.5 if RH > 70 

((RH - 40)/30) + 0.5 
otherwise 

2 0 

Dry Deposition Velocities (cm/s) 0.1 0.5 1 1 

Wet Deposition Velocities (cm/s) 

[P = annual precipitation rate (in.)] 

0.01 * P 0.003 * P 0.0003 * P 0.0003 * P 

*   The chemical conversion rate for SO2 was parameterized as a function of relative humidity to account for 
greater atmospheric conversion rates in areas of the country with higher humidity. 

** Wet deposition velocities are from (Yamartino, 1985) 

 

Meteorological Data 
Meteorological variables were calculated from rawinsonde data on the NAMER-WINDTEMP tapes4 
obtained from the National Climatic Data Center.  Winds for each of 100 sites throughout North America 
were averaged for the following layers:  the surface to 250 meters above ground level (m agl), 250-500 m 
agl, 500-1000 m agl, 1000-2000 m agl, and 2000-4000 m agl.  For each of these levels and for each of the 
100 meteorological sites, a joint frequency distribution of wind direction (16 cardinal directions) and 
wind speeds (11 speeds in 1 m/s increments) was calculated for 1990. 

These distributions were calculated separately for the twice-daily soundings.  The early morning 
soundings were assumed to be associated with the E stability category, and the late afternoon soundings 
were assumed to be associated with the C stability category.  Mixing heights were determined from each 
                                                      
4 Refers to North America wind and temperature.  These are standard data tapes for upper-air (rawinsonde) data 

collected twice daily throughout North America.  Rawinsondes are radar-tracked wind balloons. 
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sounding by calculating the virtual potential temperature.  The annual average afternoon mixing heights 
were calculated for each of the 100 meteorological sites and were used to calculate the upper limit of 
vertical diffusion (hm). The appropriate wind layer for concentration calculations was determined using 
the centroid of the diffusing plume: σz for a ground-based plume that has not yet mixed uniformly in the 
vertical, H for an elevated source, and hm/2 for a uniformly mixed plume (E.H. Pechan & Associates Inc., 
1994). 

 

S-R Transfer Coefficients 
The S-R matrix used in PIE estimated the transport of the following emissions species: (1) directly 
emitted PM2.5 and secondary organic aerosols (SOA), (2) sulfur dioxide (SO2), (3) nitrogen oxides (NOx), 
and (4) ammonia (NH3).  These species were then used in the calculation of ambient concentrations of 
PM2.5. 

A matrix of source-receptor coefficients (in units of sec/m3) spanning the entire contiguous U.S. was 
developed for each of the four pollutants using the CRDM. For a unique combination of source and 
receptor sites, a S-R transfer coefficient represents the incremental ambient air quality impact in μg/m3 at 
the receptor resulting from a 1 μg/s unit emission from the source. The S-R matrix therefore provides a 
link between emission reductions and resulting air quality concentrations. Concentration reductions that 
occur in proportion to a decrease in emissions at a source are determined by the S-R coefficients for a 
given source and all receptors.  

The pollutant concentration at a destination county is given by: 
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where:  
 

s
jD
 = Concentration of pollutant s at destination county j (μg/m3) 

s
ciE ,  = Emission of pollutant s from emissions category c in source county i (tons/year) 

s
jiT ,  = Transfer coefficient for pollutant s from source county i to destination county j for 

emissions category c (sec/m3) 
sF  = Ionic conversion factor for pollutant s 

unitF  = Unit conversion factor (28,778 μg-year/ton-sec) 

 

The ionic conversion factors are molecular weight ratios used to adjust the transfer coefficients to reflect 
the concentration of precursors to secondarily-formed particulate species. Standard molecular weights 
along with the ionic conversion factors used in this analysis are given in Table 8 and Table 9. 
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Table 8.  Standard Molecular Weights  

Specie Symbol Standard molecular weight 5 

Nitrate ion NO3
- 62.0049 

Sulfate ion SO4
2- 96.0626 

Ammonium ion NH4
+ 18.03846 

Ammonium Nitrate NH4NO3 80.04336 

Ammonium Bisulfate NH4 SO4 114.1011 

Ammonium Sulfate (NH4)2SO4 132.13952 

 

Table 9.  Ionic Conversion Factors 

Species Ionic conversion factor, Fs 

PM25, SOA 1 

SO2 → SO4
2- 96.0626 / 64.0638 

NO2 → NO3
- 62.0049 / 46.0055 

NH3 → NH4
+ 18.03846 / 17.03052 

 

A.2  Air Pollution Emissions Data 
 

We use emissions data from the baseline scenario of the EPA Multipollutant Analyses6 and the control 
scenario of the Clean Air Interstate Rule (CAIR) to forecast ambient 2010, 2015, and 2020 PM2.5 levels.7  
The assumptions underlying the non-EGU emission inventories are detailed in the CAIR Emissions 
Inventory Technical Support Document (U.S. EPA, 2005a).   

The development of the EGU emissions data is somewhat more involved.  An initial set of EGU emission 
files were provided by EPA.8  Working with David Schoengold, we then updated the EPA-supplied EGU 
emission data to reflect the latest information on forecasted EGU construction.9 

In addition to the 2010, 2015, and 2020 emission inventories, we used a 2001 emissions inventory 
(initially developed for the Clean Air Interstate Rule) to help develop calibration factors (discussed briefly 
here and in more detail in a later section).  Table 10 through Table 13 summarize the 2001, 2010, 2015, 
and 2020 emissions data for the continental U.S. that we used. 

 
                                                      
5 Standard atomic weights from http://physics.nist.gov/PhysRefData/Compositions 
6 The Multipollutant Analyses (including CAIR) are described at: 

http://www.epa.gov/airmarkets/progsregs/cair/multi.html.   
7  Note that 2002 county-level natural emissions (from plants and soil) and were estimated using the BEIS 3.12 

model (U.S. EPA, http://www.epa.gov/asmdnerl/biogen.html). 
8 EGU emission files were provided by Michael Cohen (cohen.michael@epa.gov) of the EPA Clean Air Markets 

Division via email to Donald McCubbin of Abt Associates on August 8, 2008. 
9 The file version of the EGU emissions file was provided by David Schoengold (schoengo@msbnrg.com) of MSB 

Energy Associates, Inc via email to Donald McCubbin of Abt Associates on December 22, 2008. 
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Table 10.  2001 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 PM2.5 VOC NH3

Fuel Combustion Electric Utilities 4,905,369 10,832,338 582,708 60,164 10,819

Fuel Combustion Industrial 2,726,986 2,222,662 261,204 172,431 31,362

Fuel Combustion Other 775,970 639,339 446,932 943,664 8,182

Chemical & Allied Product Manuf. 103,659 342,204 47,217 261,839 26,835

Metals Processing 94,369 331,758 126,899 71,217 2,401

Petroleum & Related Industries 123,728 316,864 27,442 440,794 9,733

Other Industrial Processes 500,264 428,376 396,602 427,901 51,927

Solvent Utilization 4,442 1,177 17,393 5,012,183 405

Storage & Transport 14,432 5,518 36,276 1,191,651 5,011

Waste Disposal & Recycling 129,801 34,553 332,882 418,710 84,986

Highway Vehicles 8,064,067 271,033 161,373 4,709,818 277,378

Off-Highway Vehicles 4,050,800 433,252 307,540 2,584,530 1,753

Natural Sources 1,054,501 41,842,833 

Miscellaneous 202,056 49,277 2,499,120 569,908 3,178,800

Total 22,750,444 15,908,352 5,243,587 58,707,645 3,689,592
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Table 11.  2010 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 PM2.5 VOC NH3

Fuel Combustion Electric Utilities (CAIR) 2,587,285 6,440,630 542,138 54,807 3,239

Fuel Combustion Electric Utilities (Base) 3,844,746 10,078,349 690,592 55,618 3,262

Fuel Combustion Industrial 2,594,238 2,173,852 252,223 180,161 35,170

Fuel Combustion Other 835,509 678,813 353,487 511,233 8,703

Chemical & Allied Product Manuf. 106,680 337,520 52,351 235,982 31,321

Metals Processing 101,050 403,466 127,652 74,797 2,393

Petroleum & Related Industries 138,528 339,890 30,765 388,168 10,517

Other Industrial Processes 537,557 481,608 435,298 415,616 53,443

Solvent Utilization 5,111 1,331 20,149 5,060,918 476

Storage & Transport 15,187 5,354 32,503 954,741 6,441

Waste Disposal & Recycling 113,217 31,616 351,319 389,357 95,852

Highway Vehicles 4,682,898 27,439 91,719 2,593,284 341,532

Off-Highway Vehicles 3,282,481 219,034 250,625 1,903,532 2,069

Natural Sources 1,054,501 0 0 41,842,833 0

Miscellaneous 202,046 49,329 2,541,927 570,631 3,258,245

Total (CAIR) 16,256,288 11,189,883 5,082,157 55,176,061 3,849,401

Total (Base) 17,493,369 14,798,311 5,225,722 55,175,899 3,849,424
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Table 12.  2015 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 PM2.5 VOC NH3

Fuel Combustion Electric Utilities (CAIR) 2,410,242 5,404,793 515,273 62,128 5,062

Fuel Combustion Electric Utilities (Base) 3,982,613 9,427,003 735,320 64,725 5,122

Fuel Combustion Industrial 2,851,065 2,468,790 284,275 200,528 38,709

Fuel Combustion Other 887,989 724,593 334,047 427,218 9,069

Chemical & Allied Product Manuf. 120,137 377,936 59,585 273,896 34,685

Metals Processing 119,210 440,615 147,647 86,712 2,821

Petroleum & Related Industries 147,168 352,666 33,210 408,229 10,913

Other Industrial Processes 607,606 546,881 484,328 463,583 55,564

Solvent Utilization 6,317 1,492 25,283 5,556,458 547

Storage & Transport 17,241 5,928 36,950 934,336 7,427

Waste Disposal & Recycling 120,048 35,091 364,997 411,163 108,123

Highway Vehicles 3,152,447 30,823 70,696 2,031,629 379,364

Off-Highway Vehicles 2,912,633 232,632 217,787 1,648,429 2,264

Natural Sources 1,054,501 0 0 41,842,833 0

Miscellaneous 202,047 49,353 2,552,712 571,212 3,338,009

Total (CAIR) 14,608,650 10,671,593 5,126,790 54,918,355 3,992,558

Total (Base) 16,061,807 14,515,027 5,316,378 54,914,328 3,992,618
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Table 13.  2020 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 PM2.5 VOC NH3

Fuel Combustion Electric Utilities (CAIR) 2,469,975 4,667,340 568,571 69,343 4,374

Fuel Combustion Electric Utilities (Base) 4,065,227 9,206,392 806,964 71,993 4,389

Fuel Combustion Industrial 2,922,582 2,318,894 288,132 206,136 39,019

Fuel Combustion Other 901,103 713,617 308,266 339,333 8,844

Chemical & Allied Product Manuf. 135,498 424,914 67,336 316,015 38,372

Metals Processing 139,437 540,307 171,021 99,430 3,312

Petroleum & Related Industries 157,185 369,602 36,134 439,705 11,398

Other Industrial Processes 684,907 619,487 536,368 514,079 57,000

Solvent Utilization 7,083 1,662 28,387 5,847,730 616

Storage & Transport 19,525 6,600 41,427 920,863 8,376

Waste Disposal & Recycling 126,739 38,507 379,661 434,112 119,907

Highway Vehicles 3,054,847 30,826 70,700 2,002,251 385,189

Off-Highway Vehicles 2,666,512 279,202 193,001 1,527,842 2,457

Natural Sources 1,054,501 0 0 41,842,833 0

Miscellaneous 202,048 49,375 2,509,136 571,760 3,417,741

Total (CAIR) 14,541,943 10,060,333 5,198,141 55,131,433 4,096,604

Total (Base) 16,019,260 14,420,874 5,406,230 55,127,486 4,096,619

 

 

When modeling emission sources, we categorized them into elevated point sources and area/mobile 
sources.  For each, we calculate an “effective stack” height, which takes into account the actual stack 
height, gas temperature and velocity, stack diameter, and other factors.  The effective stack height is 
important as it significantly affects the ability of emissions to disperse – generally the taller the effective 
stack the further the emissions might go.  In calculating effective stack height, we assume an average 
wind speed of 5 meters per second using the plume rise algorithm from ISCST3(U.S. EPA, 1995). 

We group stationary point source emissions for each county into three groups based on effective stack 
height: (1) less than 250 meters, (2) 250 to 500 meters, and (3) greater than 500 meters.  We assume that 
emissions from the two groups less than 500 meters originate from the center of the county in which they 
are located.  For point sources with effective stack heights greater than 500 meters, we use their true 
latitude and longitude coordinates when modeling the dispersion of emissions.  

Emissions from both ground-level mobile and area sources in the contiguous U.S.are combined at the 
county-level and modeled as emissions from stacks with an effective stack height of zero located at the 
source county centroid.   Table 14 summarizes these emission categories. 
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Table 14.   Emissions Categories for the S-R Matrix 

Emissions Category Effective Stack Height Modeled Location 

U.S. area and mobile emissions 0m County center 

U.S. elevated point emissions 0-250m County center 

U.S. elevated point emissions 250-500m County center 

U.S. elevated point emissions >500m True location 

 

A.3  Atmospheric Chemistry 
 
The S-R Matrix tracks the movement of both directly emitted particles as well as gases that react with 
each other to form “secondary” PM2.5, ammonium sulfate, ammonium nitrate, and secondary organic 
aerosols (SOA).  We should note that the air chemistry is greatly simplified, relative to state-of-the-art air 
quality models.  Calibrating the modeling results to actual PM2.5 monitor (as discussed in the next section) 
helps to make some of these simplifications less problematic.  Nevertheless some uncertainty remains.  
Below we describe these secondary reactions. 
 

Ammonium Sulfate & Ammonium Nitrate 
In the presence of sulfate and nitrate ions, ammonium reacts preferentially with sulphate to form 
ammonium sulfate; ammonium nitrate is formed under conditions of excess ammonium and low 
temperatures. For each destination county, the ammonium sulfate – ammonium nitrate equilibrium is 
subject to the following simplifying assumptions regarding atmospheric chemistry that form these 
particulate compounds: 
 
1a.  We first compare the moles of ammonium and sulfate.  If the mole ratio of ammonium to sulfate is 
less than one, then we assume that only a portion of sulfate converts to ammonium bisulfate and the rest 
remains as sulfate.   
 

NH4HSO4 = (115.1088 / 96.0626) SO4 
  
1b.  If the mole ratio of ammonium to sulfate is between one and two, then we assume that all sulfate 
converts to ammonium bisulfate, and a portion of the ammonium bisulfate converts to ammonium sulfate. 

 
(NH4)2SO4 = (132.1392 / 115.1088) · NH4HSO4 

 
1c.  If the mole ratio of ammonium to sulfate is greater than two, then we assume that all sulfate 
converts to ammonium nitrate.   

 
(NH4)2SO4 = (132.1392 / 96.0626) · SO4 
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2. Any ammonium remaining after the sulfate neutralization process is estimated as: 

 
(NH4)remaining = (NH4)total – (2 · 18.0383 / 96.0626) · SO4 

 
3. Ammonium nitrate formation is limited by the relative concentrations of nitrate and ammonium 
remaining after the sulfate neutralization process. The amount of nitrate that is neutralized by ammonium 
is estimated as: 

 
if (NH4)remaining > 0 then (NO3)neutralized = 62.0049 · min[(NO3 / 62.0049) · (62.0049 / 18.0383) · 

(NH4)remaining] otherwise (NO3)neutralized = 0 

 
4. Particulate ammonium nitrate is stable at relatively low temperatures.  Following prior usage of the S-R 
Matrix (e.g., NOx SIP Call) we assume that nitrate converts to ammonium nitrate only a quarter of the 
time. The annual average concentration of ammonium nitrate formed by the neutralization process is 
therefore: 

 
NH4NO3 = 0.25 · (80.0432 / 62.0049) · (NO3)neutralized 

 
5. The concentration of PM2.5 at the destination county is estimated as the sum of direct particulate 
emissions (direct PM2.5 and SOA) and secondary ammonium nitrate and sulfate. 
 

Secondary Organic Aerosols (SOA) 
 
We calculate the formation of SOA using a fixed relationship between SOA and VOC for each Tier 3 
emission category.10   The inventory for the CAIR rule (U.S. EPA, 2005a) estimated VOC but did not 
estimate SOA, so we developed a simple approach to estimate the conversion of VOC to SOA.  Ideally 
the conversion depends upon a number of factors including climate and the type of VOC.  To account for 
these factors, we used the 2010 inventory of SOA and VOC emissions generated for the Clear Skies 
Rule.11  For each state and Tier 3 emission category in this inventory, we calculated the ratio of SOA to 
VOC.  We then used these state- and Tier 3 category-specific ratios to estimate SOA in the CAIR 
emission inventory: 

SOA VOC
SOA
VOCCAIR State Tier CAIR State Tier

Clear Skies State Tier

Clear Skies State Tier
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10  The emissions inventory in PIE has fourteen broad Tier 1 categories (e.g., on-road motor vehicles), and within 

each of these larger categories there are Tier 2 (e.g., diesels), and Tier 3 (e.g., heavy duty diesels) categories. 
11 U.S. EPA. 2010 emissions projections developed for the 2003 Technical Analysis of the Clear Skies Act. Online 

at ftp://ftp.epa.gov/modelingcenter/Clear_skies/CSA2003/Emissions/ [downloaded on 12/08/2003] 
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A.4  Calibration of S-R Matrix to Monitoring Data 
 
To ensure the modeling estimates are as accurate as possible, we calibrated the S-R Matrix model 
estimates to actual monitoring data.  We did this on a county-by-county basis, estimating the calibration 
factors using a 2001 emission inventory developed for the CAIR rule (U.S. EPA, 2005a) and data from 
Federal Reference Method (FRM) and EPA’s Speciation Network (STN) monitor sites for 2002 obtained 
from the EPA. 
 
First, we used the S-R Matrix with the 2001 inventory to estimate PM2.5 levels at the center of each 
county.  Second, we used Voronoi Neighbor Averaging (VNA)12 to spatially interpolate the PM2.5 monitor 
data to generate a monitor-based estimate for each county center using the following algorithm: 
 
• For cells with an FRM monitor within 50km, use only neighboring FRM monitors and inverse 

distance (1/d) weighting 
• For cells with an FRM monitor within 50km to 100km, use neighboring FRM and ESPN monitors 

and 1/d weighting 
• For cells with no FRM monitors within 100km, use only neighboring ESPN monitors and inverse 

distance squared (1/d2) weighting 
 

This method allows for a regional background of PM2.5 (determined primarily by ESPN monitors) with 
higher concentrations in urban areas characterized by FRM monitors. 
 
We calculated a “calibration factor” for each county by dividing our monitor estimate by the model 
estimate.  For each state, Table 15 gives the average of the county-level monitor and model values as well 
as the ratio of the two (the ratio being the average of the calibration factors).  
 
When calculating future year PM2.5 levels, we used our calibration factor to adjust our model estimate for 
each county in the following way: 

Calibrated Model PM Model PM
Interpolated PM Monitor

Model PMCounty County
County

County
2 5 2 5

2 5
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12 All spatial interpolations were conducted using the EPA’s Benefits Mapping and Analysis Program 

(BenMAP), available online at http://www.epa.gov/ttn/ecas/benmodels.html. For details about the VNA 
algorithm, consult the BenMAP User Manual, available online at 
http://www.epa.gov/ttn/ecas/models/modeldoc.pdf. 



Abt Associates Inc.  34      July 2010 

Table 15.  Monitor & Model Averages (ug/m3) and Average of Monitor to Model Ratios by State 

State Monitor Model Ratio  State Monitor Model Ratio 

AL 13.4 25.0 0.55  NE 7.1 10.1 0.70 

AZ 5.8 65.1 0.15  NV 4.5 30.2 0.24 

AR 11.3 19.9 0.57  NH 8.6 17.0 0.51 

CA 11.9 44.4 0.34  NJ 12.2 26.2 0.47 

CO 6.1 12.6 0.51  NM 4.9 23.9 0.24 

CT 11.8 22.5 0.53  NY 11.2 21.0 0.59 

DC 15.4 33.4 0.46  NC 12.9 19.6 0.67 

DE 13.0 26.3 0.50  ND 4.9 8.6 0.58 

FL 9.7 24.9 0.41  OH 15.3 20.4 0.76 

GA 13.5 22.1 0.62  OK 9.5 15.1 0.65 

ID 7.7 20.4 0.44  OR 7.9 24.9 0.43 

IL 13.5 18.4 0.76  PA 13.6 21.3 0.67 

IN 14.8 20.6 0.73  RI 9.5 14.6 0.65 

IA 10.2 11.8 0.88  SC 12.6 23.3 0.55 

KS 7.7 11.2 0.67  SD 6.0 8.8 0.69 

KY 13.8 18.3 0.76  TN 13.2 19.8 0.68 

LA 10.8 25.3 0.46  TX 8.6 14.7 0.64 

ME 8.4 17.4 0.52  UT 6.7 17.2 0.46 

MD 13.7 26.0 0.55  VT 9.8 13.7 0.72 

MA 10.9 21.5 0.57  VA 13.3 19.7 0.69 

MI 10.6 15.6 0.68  WA 7.3 12.7 0.69 

MN 7.7 13.9 0.57  WV 14.4 18.0 0.81 

MS 12.0 22.8 0.53  WI 9.7 13.9 0.70 

MO 11.8 17.0 0.73  WY 4.6 19.4 0.25 

MT 5.3 10.7 0.51      
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Appendix B: Derivation of Health Impact Functions 
 
This appendix reviews the steps we performed in taking models from the epidemiological study and 
converting them into health impact functions, which we then use to quantify the change in adverse health 
effects due to a change in air pollution exposure.  The most common functional forms the log-linear and 
logistic, with a linear model used in some cases.  All three are discussed below.   

Note that the log-linear and logistic generally produce comparable results, so the fact that some health 
impacts are estimated with a logistic function and others with a log-linear function is not a cause for 
concern.  Indeed, in some circumstances, such as for small changes in air pollution, the logistic and log-
linear produce essentially the same result. 
 

B.1  The Linear Model  
 
A linear model between the adverse health effect, y, and the pollutant concentration, x, is of the form 

 
A linear model includes the factors that are believed to affect the incidence of the health effect, of which 
the pollutant would be one.  So, the variable “α” in the linear function consists of all the other 
independent variables in the regression, typically evaluated at their mean values, times their respective 
coefficients. 

The function describing the relationship between a change in x and the corresponding change in 
incidence (rate) of the health effect from the baseline level (y0) to the post-control level (yc) is then: 

 
If y denotes an incidence rate, then Δy denotes the change in the incidence rate.  The expected number of 
cases avoided would then be calculated by multiplying this Δy by the relevant population.  If y denotes an 
incidence count, then the β is first divided the baseline study population to generate an incidence rate.  
The expected number of cases avoided can then be calculated by multiplying Δy by the relevant 
population of interest: 

 
 
 
 

The coefficient, β, and standard error of β (σ β) are reported directly in studies presenting results from 
linear regression models. 
 
 

y x= + ⋅α β

Δ Δy y y x x xc c= − = ⋅ − = ⋅0 0β β( ) .

CasesAvoided x pop= ⋅ ⋅β Δ .
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B.2  The Log-linear Model  
 
The most commonly used functional form for criteria air pollutant concentration-response functions is the 
log-linear model.  It defines the relationship between x and y to be of the form: 

or, equivalently, 

 

where the parameter B is the incidence (rate), y, when the pollutant concentration, x, is zero; the 
parameter β is the coefficient of x; ln(y) is the natural logarithm of y; and α = ln(B).1   
 

Estimating Avoided Cases 
 
The relationship between  Δx and Δy is: 

This may be rewritten as: 

 

where y0 is the baseline incidence (rate) of the health effect -- i.e., the incidence (rate) before the change 
in x.  If y is incidence rate rather than incidence, then the change in incidence rate, Δy, must be multiplied 
by the relevant population to get the expected number of cases avoided.  For example, if y denotes the 
annual number of cases of the adverse health effect per 100,000 population, and pop denotes the 
population, then the expected number of cases avoided is calculated as 

CasesAvoided y
pop

= ⋅Δ (
,

).
100 000  

                                                      
1 Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of as containing these 
other covariates, for example, evaluated at their means.  That is, B = Boexp{β1x1 + ... + βnxn}, where Bo is the incidence of 
y when all covariates in the model are zero, and x1, ... , xn are the other covariates evaluated at their mean values.  The 
parameter B drops out of the model, however, when changes in y are calculated, and is therefore not important. 

y B e x= ⋅ ⋅β

ln( ) ,y x= + ⋅α β

Δy y y Be Bec
x xc= − = −⋅ ⋅

0
0β β .

Δ Δy y e x= ⋅ −⋅
0 1( ) ,β
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Estimating the Coefficient (β) 
 
Epidemiological studies that estimate log-linear concentration-response functions often report a relative 
risk for a specific Δx, rather than the coefficient, β, in the function itself.  The relative risk (RR) is simply 
the ratio of two risks corresponding to two levels of pollutant concentration –  the “high” risk 
(corresponding to the higher pollutant level, x = xhigh) and the lower risk (corresponding to the lower 
pollutant level, x = xlow): 

Using the original log-linear function above, it can be shown that the relative risk associated with a 
specific change in pollutant concentration of Δx* = xhigh - xlow can be written as 
  

Taking the natural log of both sides, the coefficient in the function underlying the relative risk can be 
derived as: 

Once the pollutant coefficient, β, has been calculated, the change in incidence (rate), Δy, corresponding to 
any change in pollutant concentration, Δx, can be calculated, using the relationship between Δx and Δy 
given above, the baseline incidence (rate) and assessment population. 
 

Estimating the Standard Error of β (σ β) 
 
The standard error of β (σ β) is not often directly reported in studies presenting results from log-linear 
regression models.  Results are most commonly presented as a relative risk and 95% confidence interval.  
The 95% confidence interval is defined as follows: 
 
 
 
 
  
Based on this equation, the standard error of β (σ β) can be estimated from the relative risk (RR), upper 
limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval (LL), as 
follows: 

σ
β β

β , .
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σ
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Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the strength of 
the observed pollutant-health effect association.  It is defined as the ratio of the coefficient, β, to the 
standard error of β (σ β).  The standard error of β (σ β) can, therefore, be estimated from the t-statistic as 
follows: 
 
 
 
 
 

The Log-Linear Model: An Example 
 
Lippmann et al. (2000) reported a relative risk (RR) of 1.045 for premature (non-accidental) mortality 
associated with an increase in daily PM2.5 of 36 μg/m3 in Detroit, MI.  The PM2.5 coefficient in the C-R 
function from which the RR was derived was back-calculated to be: 
 

    
β= =

ln( . )
. .

1 045
36

0 001223
 

 
Suppose we use the C-R function from Lippmann et al. (2000) to estimate the change in incidence of 
premature deaths in Wayne County, MI (which contains Detroit) in the year 2000 resulting from a 
decrease in PM2.5 concentration of 15 μg/m3 per day.  The baseline incidence of non-accidental mortality 
in Detroit is estimated to be 891.12 per year per 100,000 general population, or 2.441 per day per 100,000 
general population.  The population of Wayne County, MI in the year 2000 is estimated to be 2,061,162.  
The inputs to this calculation are: 

 

Δx = -15 

y0 = 2.441 per day per 100,000 general population 

β = 0.001223 

general population of Wayne County, MI =  2,061,162. 

 

The number of avoided premature deaths per day is estimated to be: 

    Δ Δy y e popx= −0 1 100 000( ) * ( / , )*β
 

 

    = −−2 441 1 20 611620 001223 15. * ( ) * .. *e  
 

    = − 0 914503325.  

σ
β

β =
t

.
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That is, a decrease in PM2.5 of 15 μg/m3 per day is predicted to result in 0.914503325 premature deaths 
avoided per day in Wayne County, MI.  Over the year (the year 2000 was a leap year, and so had 366 
days), that’s  

 

    0.914503325*366  

    = 334.7 premature deaths avoided. 

 

B.3  The Logistic Model  
 
In some epidemiological studies, a logistic model is used to estimate the probability of an occurrence of 
an adverse health effect.  Given a pollutant level, x, and a vector of other explanatory variables, Z, the 
logistic model assumes the probability of an occurrence is: 

( )y prob occurrence x Z
e e

e e

x Z

x Z= =
+

⎛
⎝
⎜

⎞
⎠
⎟| , ,β α

β α

β α1  
where β is the coefficient of the pollutant concentration, x, and α is a vector of coefficients of the 
variables in the vector Z.2 
 
 

Estimating Avoided Cases 
 
The change in the probability of an occurrence (Δy) corresponding to a change in the level of the 
pollutant from xc to x0 (= Δx), all other covariates held constant, may be derived from the original C-R 
function above: 

( )Δ
Δ

y y y
y

y e y
yc x

= − =
− ⋅ +

−
− ⋅0
0

0 0
01 β

.
 

Once again, to calculate the expected number of avoided cases of the adverse effect, it is necessary to 
multiply by the population:3 
 

CasesAvoided y pop= ⋅Δ .  
    
 

                                                      
2 Greene (1997, Chapter 19) presents models with discrete dependent variables; in particular, page 874 presents the logit 
model.  See also Judge et al.(1985, p. 763). 

3 Note that because Δy here is a change in probability of occurrence (rather than a change in the rate per 100,000 
population), it is necessary to multiply by the population rather than by the population/100,000. 
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Estimating the Coefficient (β) 
 
The estimated pollutant coefficient, β, in the original function is typically not reported in studies that use 
the logistic model.  Instead, the odds ratio corresponding to a specific change in x is reported. 

 

The odds of an occurrence is defined as: 

odds
y

y
=

−1
.

 
 
 
 
It can be shown that 

odds
y

y
e ex Z=

−
=

1
β α

 
 
 
 
The odds ratio is just the ratio of the odds when the pollutant is at a specified higher level, xhigh, to the 
odds when the pollutant is at a specified lower level, xlow: 
 

oddsratio
odds
odds

e
e

ehigh

low

x

x
x x

high

low

high low= = =⋅
−

β

β
β( ) .

 
 
Often the odds ratio corresponding to a specified change in x, call it Δx*, is the only measure of the effect 
of x reported from a study using a logistic model (just as the relative risk corresponding to a specified 
change in x is often the only measure of the effect of x reported from a study using a log-linear model).  
However, it is easy to calculate the underlying pollutant coefficient, β, from the odds ratio as follows: 
 

oddsratio e x= βΔ *

 
 

ln( ) *odds ratio x= βΔ ⇒ =β
ln( )

.*

oddsratio
xΔ  

 
Given the pollutant coefficient, β, and the baseline probability of occurrence, y0, the change in the 
probability, Δy, associated with any change in pollutant concentration, Δx, can be derived using the 
equation for Δy above.  The expected number of avoided cases of the adverse effect is then obtained by 
multiplying by the population. 
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Estimating the Standard Error of β (σ β) 
 
The standard error of β (σ β) is not often directly reported in studies presenting results from logistic 
regression models.  Results are most commonly presented as an odds ratio and 95% confidence interval.  
The 95% confidence interval is defined as follows: 

 

95% 1 96CI e x= ±( . )β σβΔ
 

 
 
Based on this equation, the standard error of β (σ β) can be estimated from the odds ratio (OR), upper limit 
of the 95% confidence interval (UL), and lower limit of the 95% confidence interval (LL), as follows: 
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Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the strength of 
the observed pollutant-health effect association.  It is defined as the ratio of the coefficient, β, to the 
standard error of β (σ β).  The standard error of β (σ β) can, therefore, be estimated from the t-statistic as 
follows: 

σ
β

β =
t

.
 

 
 

The Logistic Model: An Example 
 
Schwartz and Neas (2000) reported an odds ratio of 1.33 for lower respiratory symptoms (LRS) among 
school children, ages 7 - 14, corresponding to an increase in daily PM2.5 concentration of 15 μg/m3.  The 
PM2.5 coefficient in the logistic C-R function from which the odds ratio was derived is back-calculated as 

    
β = =

ln( . )
. .

1 33
15

0 019012
  

The baseline incidence rate, y0, (the probability per child per day of lower respiratory symptoms) was 
estimated in the study to be 0.0012.   
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Suppose we use the logistic C-R function from Schwartz and Neas (2000) to estimate the number of days 
with LRS avoided among schoolchildren, ages 7-14, in St. Louis during the warm months of April 
through August (the months used in the study) if PM2.5 concentrations were reduced by 10 μg/m3 each 
day.  The inputs to this calculation are: 

Δx = xc - x0 = -10 

y0 = 0.0012 

β = 0.019012 

the number of days in April through August = 153 

the number of children, ages 7 - 14, in St. Louis area (9 counties) = 307,170. 

The number of avoided LRS days among children ages 7-14 in the St. Louis area resulting from a 
decrease of 10 μg/m3 PM2.5 per day is estimated to be 

Δ Δy
y

y e y
y popx=

− +
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⎡

⎣
⎢

⎤
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0 0012 307 1700 019012 10

.
( . ) * .

. * ,. *( )e  
 

= -0.0002076*307,170 = –63.7568 per day. 

 

There are 153 days in April through August, for a total of -63.7568*153 =  

    -9754.79, or  

    9,754.79 LRS days avoided.  
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Appendix C: Health Impact Functions 
 
In this Appendix, we present the health impact functions used to estimate PM-related adverse health 
effects.  Each sub-section has an Exhibit with a brief description of the Health impact function and the 
underlying parameters.  Following each Exhibit, we present a brief summary of each of the studies and 
any items that are unique to the study. 

Note that Appendix B mathematically derives the standard types of health impact functions that we 
encountered in the epidemiological literature, such as, log-linear, logistic and linear, so we simply note 
here the type of functional form.  Finally, Appendix D presents a description of the sources for the 
incidence and prevalence data used in these health impact functions. 
 
 



 
Abt Associates Inc.  44      July 2010 

 

Exhibit C-1.  Health Impact Functions for Particulate Matter and All-Cause Mortality  
 
Author Year Location Age Metric Beta Std Err Form Notes 
Laden et al. 2006 6 cities 25-99 Annual 0.014842 0.004170 Log-linear  
Pope et al. 2002 51 cities 30-99 Annual 0.005827 0.002157 Log-linear  
Woodruff et al. 1997 86 cities 0-0 Annual 0.003922 0.001221 Logistic  
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C.1  Mortality 
 
Both long- and short-term exposures to ambient levels of air pollution have been associated with 
increased risk of premature mortality. The size of the mortality risk estimates from epidemiological 
studies, the serious nature of the effect itself, and the high monetary value ascribed to prolonging life 
make mortality risk reduction the most significant health endpoint quantified in this analysis.  We include 
mortality in adults, as well as infants. 

 

Mortality, All Cause (Pope, et al., 2002)  
 

The Pope et al. (2002) analysis is a longitudinal cohort tracking study that uses the same American 
Cancer Society cohort as the original Pope et al. (1995) study, and the Krewski et al. (2000) reanalysis.  
Pope et al.(2002) analyzed survival data for the cohort from 1982 through 1998, 9 years longer than the 
original Pope study.  Pope et al. (2002) also obtained PM2.5 data in 116 metropolitan areas collected in 
1999, and the first three quarters of 2000.  This is more metropolitan areas with PM2.5 data than was 
available in the Krewski reanalysis (61 areas), or the original Pope study (50 areas), providing a larger 
size cohort. 

They used a Cox proportional hazard model to estimate the impact of long-term PM exposure using three 
alternative measures of PM2.5 exposure; metropolitan area-wide annual mean PM levels from the 
beginning of tracking period (’79-’83 PM data, conducted for 61 metropolitan areas with 359,000 
individuals), annual mean PM from the end of the tracking period (’99-’00, for 116 areas with 500,000 
individuals), and the average annual mean PM levels of the two periods (for 51 metropolitan areas, with 
319,000 individuals).  PM levels were lower in ’99-00 than in ’79 - ’83 in most cities, with the largest 
improvements occurring in cities with the highest original levels. 

Pope et al. (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and reported results for 
all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 
460-519), and “all other” deaths.1 Like the earlier studies, Pope et al. (2002) found that mean PM2.5 is 
significantly related to all-cause and cardiopulmonary mortality.  In addition, Pope et al. (2002) found a 
significant relationship with lung cancer mortality, which was not found in the earlier studies.  None of 
the three studies found a significant relationship with “all other” deaths. 

Pope et al. (2002) obtained ambient data on gaseous pollutants routinely monitored by EPA during the 
1982-1998 observation period, including SO2, NO2, CO, and ozone.  They did not find significant 
relationships between NO2, CO, and ozone and premature mortality, but there were significant 
relationships between SO4 (as well as SO2), and all-cause, cardiopulmonary, lung cancer and “all other” 
mortality. 

The coefficient and standard error for PM2.5 using the average of ’79-’83 and ’99-’00 PM data are 
estimated from the relative risk (1.06) and 95% confidence interval (1.02-1.11) associated with a change 
in annual mean exposure of 10.0 μg/m3 (Pope, et al., 2002, Table 2). 

Functional Form: Log-linear 
Coefficient: 0.005827 

                                                      
1  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is 
all-cause mortality less lung cancer and cardiopulmonary deaths. 
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Standard Error: 0.002157 
Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older 
Population: population of ages 30 and older. 
 

Mortality, All Cause – Laden, et al. (2006) 
Laden et al (2006) performed an extended mortality follow-up for eight years in a period of reduced air 
pollution concentrations using data from the Harvard Six Cities adult cohort study.  They used annual 
city-specific PM2.5 concentrations measured from1979-1988, and estimated the air quality data for the 
subsequent eight years using publicly available data.  The authors used a Cox proportional hazards 
regression controlling for individual risk factors to examine the relationship between long-term exposure 
to PM2.5 and mortality.  Laden et al found a significant increase in the overall mean mortality associated 
with a 10-μg/m3 increase in PM2.5. 
 
The coefficient and standard error are estimated from the relative risk (1.16) and 95% confidence interval 
(1.07-1.26) associated with a 10-μg/m3 increase in PM2.5 (Laden, et al., 2006, p. 667). 
 
Functional Form: Log-linear 
Coefficient: 0.01484 
Standard Error: 0.00417 
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older 
Population: population of ages 25 and older. 
 

Infant Mortality (Woodruff, et al., 1997) 
In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 1991, Woodruff et 
al. (1997) found a significant link between PM10 exposure in the first two months of an infant’s life with 
the probability of dying between the ages of 28 days and 364 days.  PM10 exposure was significant for all-
cause mortality.  PM10 was also significant for respiratory mortality in average birth-weight infants, but 
not low birth-weight infants. 
 
The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence interval (1.02-
1.07) associated with a 10 μg/m3 change in PM10 (Woodruff, et al., 1997, Table 3). 
 
Functional Form: Logistic 
Coefficient: 0.003922 
Standard Error: 0.001221 
Incidence Rate: county-specific annual post-neonatal13 infant deaths per infant under the age of one  
Population: population of infants under one year old. 

                                                      
13 Post-neonatal refers to infants that are 28 days to 364 days old. 
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Table 16.  Health Impact Functions for Particulate Matter and Chronic Illness 

 
Endpoint Name Author Year Location Age Metric Beta Std Error Functional Form 
Chronic Bronchitis Abbey et al. 1995 California 27-99 Annual 0.013185 0.006796 Logistic 
Acute Myocardial 
Infarction, Nonfatal Peters et al. 2001 Boston, MA 18-99 D24HourMean 0.024121 0.009285 Logistic 
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C.2  Chronic Illness 
 
We include two types of chronic illness: chronic bronchitis and non-fatal heart attacks.  Non-fatal heart 
attacks are considered “chronic” because the impact is long-lasting and this is reflected in its valuation 
(discussed in Appendix F). 
 

Chronic Bronchitis  (Abbey, et al., 1995b) 
 
Abbey et al.(1995b) examined the relationship between estimated PM2.5 (annual mean from 1966 to 
1977), PM10 (annual mean from 1973 to 1977) and TSP  (annual mean from 1973 to 1977) and the same 
chronic respiratory symptoms in a sample population of 1,868 Californian Seventh Day Adventists.  The 
initial survey was conducted in 1977 and the final survey in 1987.  To ensure a better estimate of 
exposure, the study participants had to have been living in the same area for an extended period of time.  
In single-pollutant models, there was a statistically significant PM2.5 relationship with development of 
chronic bronchitis, but not for AOD or asthma; PM10 was significantly associated with chronic bronchitis 
and AOD; and TSP was significantly associated with all cases of all three chronic symptoms.  Other 
pollutants were not examined. 

The estimated coefficient (0.0137) is presented for a one μg/m3 change in PM2.5 (Abbey, et al., 1995b, 
Table 2).  The standard error is calculated from the reported relative risk (1.81) and 95% confidence 
interval (0.98-3.25) for a 45 μg/m3 change in PM2.5 (Abbey, et al., 1995b, Table 2). 
 
Functional Form: Logistic 
Coefficient: 0.0137 
Standard Error: 0.00680 
Incidence Rate: annual bronchitis incidence rate per person (Abbey, et al., 1993b, Table 3) = 0.00378 
Population: population of ages 27 and older1 without chronic bronchitis = 95.57%2 of population 27+. 
 

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Peters, et al., 2001) 
 
Peters et al. (2001) studied the relationship between increased particulate air pollution and onset of heart 
attacks in the Boston area from 1995 to 1996.  The authors used air quality data for PM10, PM10-2.5, 
PM2.5,“black carbon”, O3, CO, NO2, and SO2 in a case-crossover analysis.  For each subject, the case 
period was matched to three control periods, each 24 hours apart.  In univariate analyses, the authors 
observed a positive association between heart attack occurrence and PM2.5 levels hours before and days 
before onset.  The authors estimated multivariate conditional logistic models including two-hour and 
twenty-four hour pollutant concentrations for each pollutant.  They found significant and independent 
associations between heart attack occurrence and both two-hour and twenty-four hour PM2.5 
concentrations before onset.  Significant associations were observed for PM10 as well.  None of the other 

                                                      
1 Using the same data set, Abbey et al. (1995a, p.140)reported the respondents in 1977 ranged in age from 27 to 95.   

2 The American Lung Association  (2002b, Table 4)  reports a chronic bronchitis prevalence rate for ages 18 and over of 
4.43%(American Lung Association, 2002b).  
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particle measures or gaseous pollutants were significantly associated with acute myocardial infarction for 
the two hour or twenty-four hour period before onset. 
 
The patient population for this study was selected from health centers across the United States.  The mean 
age of participants was 62 years old, with 21% of the study population under the age of 50.  In order to 
capture the full magnitude of heart attack occurrence potentially associated with air pollution and because 
age was not listed as an inclusion criteria for sample selection, we apply an age range of 18 and over in 
the C-R function.  According to the National Hospital Discharge Survey, there were no hospitalizations 
for heart attacks among children <15 years of age in 1999 and only 5.5% of all hospitalizations occurred 
in 15-44 year olds (Popovic, 2001, Table 10). 
 
The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34) for a 20 
μg/m3 increase in twenty-four hour average PM2.5 (Peters, et al., 2001, Table 4, p. 2813). 
 
Functional Form: Logistic 
Coefficient: 0.024121 
Standard Error: 0.009285 
Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-specific 
daily heart attack hospitalization rate (ICD code 410) 3 
Population: population of ages 18 and older. 
 

                                                      
3This estimate assumes that all heart attacks that are not instantly fatal will result in a hospitalization.  In addition, 
Rosamond et al. (1999)report that approximately six percent of male and eight percent of female hospitalized heart attack 
patients die within 28 days (either in or outside of the hospital).  We applied a factor of 0.93 to the number of 
hospitalizations to estimate the number of nonfatal heart attacks per year. 
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Table 17.  Health Impact Functions for Particulate Matter and Hospital Admissions 

Endpoint Name Author Year Location Age Beta Std Error Functional 
Form 

Congestive Heart Failure Ito 2003 Detroit, MI 65-99 0.003074 0.001292 Log-linear 
Dysrhythmia Ito 2003 Detroit, MI 65-99 0.001249 0.002033 Log-linear 
Ischemic Heart Disease (less AMI) Ito 2003 Detroit, MI 65-99 0.001435 0.001156 Log-linear 
Chronic Lung Disease Ito 2003 Detroit, MI 65-99 0.001169 0.002064 Log-linear 
Pneumonia Ito 2003 Detroit, MI 65-99 0.003979 0.001659 Log-linear 
All Cardiovascular (less AMI) Moolgavkar 2000 Los Angeles, CA 18-64 0.001400 0.000341 Log-linear 
Chronic Lung Disease (less Asthma) Moolgavkar 2000 Los Angeles, CA 18-64 0.002200 0.000733 Log-linear 
All Cardiovascular (less AMI) Moolgavkar 2003 Los Angeles, CA 65-99 0.001580 0.000344 Log-linear 
Chronic Lung Disease Moolgavkar 2003 Los Angeles, CA 65-99 0.001850 0.000524 Log-linear 
Asthma Sheppard 2003 Seattle, WA 0-64 0.003324 0.001045 Log-linear 
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C.3  Hospitalizations 
 
We include two main types of hospital admissions – respiratory (pneumonia, COPD, and ashtma) and 
cardiovascular (all types, including ischemic heart disease, dysrhythmia, and heart failure). 
 

Hospital Admissions for Asthma (Sheppard, et al., 1999;2003) 
 
Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (<65) hospital 
admissions for asthma from 1987 to 1994.  They used air quality data for PM10, PM2.5, coarse PM1010-2.5, 
SO2, ozone, and CO in a Poisson regression model with control for time trends, seasonal variations, and 
temperature-related weather effects.14  They found asthma hospital admissions associated with PM10, 
PM2.5, PM10-2.5, CO, and ozone.  They did not observe an association for SO2.  They found PM and CO to 
be jointly associated with asthma admissions.  The best fitting co-pollutant models were found using 
ozone.  However, ozone data was only available April through October, so they did not consider ozone 
further.  For the remaining pollutants, the best fitting models included PM2.5 and CO.  Results for other 
co-pollutant models were not reported. 
 
In response to concerns that the work by Sheppard et al. (1999) may be biased because of concerns about 
the (S-plus) software used in the original analysis, Sheppard (2003) reanalyzed some of this work, in 
particular Sheppard reanalyzed the original study’s PM2.5 single pollutant model.  
 
The coefficient and standard error are based on the relative risk (1.04) and 95% confidence interval (1.01-
1.06) for a 11.8 μg/m3 increase in PM2.5 in the 1-day lag GAM stringent model (Sheppard, 2003, pp. 228-
299). 
 
Functional Form: Log-linear 
Coefficient: 0.003324 
Standard Error: 0.001045 
Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person <65 (ICD 
code 493) 
Population: population of ages 65 and under. 
 

Hospital Admissions for Chronic Lung Disease (Ito, 2003) 
 
Lippmann et al. (2000) studied the association between particulate matter and daily mortality and 
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was 
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and 
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson 
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and 
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia 
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414), 
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not 

                                                      
14 PM2.5 levels were estimated from light scattering data. 
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statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and 
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or 
CO, the results were generally comparable.  The PM2.5 C-R functions are based on results of the single 
pollutant model and co-pollutant model with ozone. 
 
In response to concerns about the (S-plus) software used in the original analysis, Ito (2003)  reanalyzed 
the study by Lippmann et al. (2000).  The reanalysis by Ito reported that more generalized additive 
models with stringent convergence criteria and generalized linear models resulted in smaller relative risk 
estimates. 
 
The coefficient and standard error are based on the relative risk (1.043) and 95% confidence interval 
(0.902-1.207) for a 36 μg/m3 increase in PM2.5 in the 3-day lag GAM stringent model(Ito, 2003, Table 8). 
 
Functional Form: Log-linear 
Coefficient: 0.001169 
Standard Error: 0.002064 
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per 
person 65+ (ICD codes 490-496) 
Population: population of ages 65 and older. 
 

Hospital Admissions for Chronic Lung Disease (Moolgavkar, 2003; 2000a) 
 
Moolgavkar (2000a) examined the association between air pollution and COPD hospital admissions (ICD 
490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected daily air pollution 
data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available only in Los Angeles.  
The data were analyzed using a Poisson regression model with generalized additive models to adjust for 
temporal trends.  Separate models were run for 0 to 5 day lags in each location.  Among the 65+ age 
group in Chicago and Phoenix, weak associations were observed between the gaseous pollutants and 
admissions.  No consistent associations were observed for PM10.  In Los Angeles, marginally significant 
associations were observed for PM2.5, which were generally lower than for the gases.  In co-pollutant 
models with CO, the PM2.5 effect was reduced.  Similar results were observed in the 0-19 and 20-64 year 
old age groups. 
 
In response to concerns about the (S-plus) software used in the original analysis, Moolgavkar (2003) 
reanalyzed his earlier study.  In the reanalysis, he reported that more generalized additive models with 
stringent convergence criteria and generalized linear models resulted in smaller relative risk estimates. 
 
The PM2.5 C-R functions for the 65+ age group are based on the reanalysis in Moolgavkar (2003) of the 
single-pollutant model.  The PM2.5 C-R functions for the 20-64 age group are based on the original 
study’s single-pollutant model.  Since the true PM effect is most likely best represented by a distributed 
lag model, then any single lag model should underestimate the total PM effect.  As a result, we selected 
the lag models with the greatest effect estimates for use in the C-R functions. 
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Ages 18 to 64 (Moolgavkar, 2000a)15 
 
The single pollutant coefficient and standard error are calculated from an estimated percent change of 
2.2and t-statistic of 3.0 for a 10 μg/m3 increase in PM2.5 in the two-day lag model (Moolgavkar, 2000a, 
Table 4).16 
 
Functional Form: Log-linear 
Coefficient: 0.0022 
Standard Error: 0.000733 
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per 
person 18-64 (ICD codes 490-492, 494-496)17 
Population: population of ages 18 to 64. 
 

Ages 65 and older (Moolgavkar, 2003) 
 
The coefficient and standard error are calculated from an estimated percentage change of 1.85 and t-
statistic of 3.53 for a 10 μg/m3 increase in PM2.5 in the 2-day lag GAM-30df stringent (10-8) model 
(Moolgavkar, 2003, Table 17).18 
 
Functional Form: Log-linear 
Coefficient: 0.001833 
Standard Error: 0.000519 
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per 
person 65+ (ICD codes 490-496) 
Population: population of ages 65 and older. 
 
 

Hospital Admissions for Pneumonia (Ito, 2003) 
 
Lippmann et al. (2000)studied the association between particulate matter and daily mortality and 
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 
                                                      
15 Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other studies, we 

apply the results to the population of ages 18 to 64. 
16 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the 

“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially 
the same.  For example, a true percent change of 2.2 would result in a relative risk of 1.022 and coefficient of 
0.002176.  The “estimated” percent change, as reported by Moolgavkar, of 2.2 results in a relative risk of 1.022244 
and coefficient of 0.0022. 

17 Moolgavkar (2000a)  reports results for ICD codes 490-496.  In order to avoid double counting non-elderly asthma 
hospitalizations (ICD code 493) in a total benefits estimation, we have excluded ICD code 493 from the baseline 
incidence rate used in this function. 

18 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports 
the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are 
essentially the same.  For example, a true percent change of 2.0 would result in a relative risk of 1.020 and 
coefficient of 0.001980.  An “estimated” percent change of 2.0 results in a relative risk of 1.020201 and 
coefficient of 0.002. 
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1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was 
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and 
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson 
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and 
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia 
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414), 
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not 
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and 
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or 
CO, the results were generally comparable.  
 
In response to concerns about the (S-plus) software used in the original analysis, Ito (2003) reanalyzed the 
study by Lippmann et al.(2000).  The reanalysis by Ito reported that more generalized additive models 
with stringent convergence criteria and generalized linear models resulted in smaller relative risk 
estimates.  The PM2.5 C-R function is based on the results of the single pollutant model. 
 
The estimated PM2.5 coefficient and standard error are based on a relative risk of 1.154 (95% CI -1.027, 
1.298) due to a PM2.5 change of 36 μg/m3 in the 1-day lag GAM stringent model (Ito, 2003, Table 7). 
 
Functional Form: Log-linear 
Coefficient: 0.003979 
Standard Error: 0.001659 
Incidence Rate: region-specific daily hospital admission rate for pneumonia admissions per person 65+ 
(ICD codes 480-487) 
Population: population of ages 65 and older. 
 
 

Hospital Admissions for All Cardiovascular (Moolgavkar, 2000b; 2003) 
 
Moolgavkar (2000b) examined the association between air pollution and cardiovascular hospital 
admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected 
daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available 
only in Los Angeles.  The data were analyzed using a Poisson regression model with generalized additive 
models to adjust for temporal trends.  Separate models were run for 0 to 5 day lags in each location.  
Among the 65+ age group, the gaseous pollutants generally exhibited stronger effects than PM10 or PM2.5.  
The strongest overall effects were observed for SO2 and CO.  In a single pollutant model, PM2.5 was 
statistically significant for lag 0 and lag 1.  In co-pollutant models with CO, the PM2.5 effect dropped out 
and CO remained significant.  For ages 20-64, SO2 and CO exhibited the strongest effect and any PM2.5 
effect dropped out in co-pollutant models with CO.  
 
In response to concerns about the (S-plus) software used in the original analysis, Moolgavkar (2003) 
reanalyzed his earlier study.  In the reanalysis, he reported that more generalized additive models with 
stringent convergence criteria and generalized linear models resulted in smaller relative risk estimates.  
Not all of the original results were replicated, so we present here a mix of C-R functions from the 
reanalysis and from the original study (when the reanalyzed results were not available).  The PM2.5 C-R 
functions are based on single pollutant and co-pollutant (PM2.5 and CO) models.   
 
We use the single-pollutant results for ages 65 and older from Moolgavkar(2003).  Since he did not 
reanalyze the results for ages 20-64, we use the single-pollutant results from his earlier study.  
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Note that Moolgavkar (2000b) reported results that include ICD code 410 (heart attack).  In the benefits 
analysis, avoided nonfatal heart attacks are estimated using the results reported by Peters et al (2001).  
The baseline rate in the Peters et al. function is a modified heart attack hospitalization rate (ICD code 
410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to avoid double 
counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate 
used in this function.  
 

Ages 18 to 6419 (Moolgavkar, 2000a) 
 
The single pollutant coefficient and standard error are calculated from an estimated percent change of 1.4 

and t-statistic of 4.1 for a 10 μg/m3 increase in PM2.5 in the zero lag model (Moolgavkar, 2000b, Table 
4).20 
 
Functional Form: Log-linear 
Coefficient: 0.0014 
Standard Error: 0.000341 
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions per person 
ages 18 to 64 (ICD codes 390-409, 411-429) 
Population: population of ages 18 to 64. 
 

Ages 65 and older (Moolgavkar, 2003) 
 
The single pollutant coefficient and standard error are calculated from an estimated percent change of 
1.58 and t-statistic of 4.59 for a 10 μg/m3 increase in PM2.5 in the 0-day lag GAM-30df stringent (10-8) 
model (Moolgavkar, 2003, Table 12).21 
 
Functional Form: Log-linear 
Coefficient: 0.001568 
Standard Error: 0.000342 
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions per person 
65+ (ICD codes 390-409, 411-429) 
Population: population of ages 65 and older. 
 
 
                                                      
19 Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other studies, we 

apply the results to the population of ages 18 to 64. 
20 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by 

Moolgavkar(2000b), he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative 
risk is close to 1, RR-1 and log RR are essentially the same.  For example, a true percent change of 1.4 would result in 
a relative risk of 1.014 and coefficient of 0.00139.  Assuming that the 1.4 is the “estimated” percent change described 
previously would result in a relative risk of 1.014098 and coefficient of 0.0014.  We assume that the “estimated” 
percent changes reported in this study reflect the definition from (Moolgavkar, 2000b). 

21 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the 
“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially 
the same.  For example, a true percent change of 2.2 would result in a relative risk of 1.022 and coefficient of 
0.002176.  An “estimated” percent change of 2.2 results in a relative risk of 1.022244 and coefficient of 0.0022. 
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Hospital Admissions for Dysrhythmia, Ischemic Heart Disease, and Congestive 
Heart Failure (Ito, 2003) 
 
Lippmann et al. (2000) studied the association between particulate matter and daily mortality and 
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was 
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and 
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson 
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and 
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia 
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414), 
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not 
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and 
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or 
CO, the results were generally comparable. 
 
In response to concerns about the (S-plus) software used in the original analysis, Ito (2003) reanalyzed the 
study by Lippmann et al.(2000).  The reanalysis by Ito reported that more generalized additive models 
with stringent convergence criteria and generalized linear models resulted in smaller relative risk 
estimates.  We use the single-pollutant model results from this reanalysis. 
 

Dysrhythmia 
The co-pollutant coefficient and standard error are calculated from a relative risk of 1.046 (95% CI 0.906-
1.207) for a 36 μg/m3 increase in PM2.5 in the 1-day lag GAM stringent model (Ito, 2003, Table 10). 
 
Functional Form: Log-linear 
Coefficient: 0.001249 
Standard Error: 0.002033 
Incidence Rate: region-specific daily hospital admission rate for dysrhythmia admissions per person 65+ 
(ICD code 427) 
Population: population of ages 65 and older. 
 

Congestive Heart Failure 
The co-pollutant coefficient and standard error are calculated from a relative risk of 1.117 (95% CI 1.020-
1.224) for a 36 μg/m3 increase in PM2.5 in the 1-day lag GAM stringent model (Ito, 2003, Table 11). 
 
Functional Form: Log-linear 
Coefficient: 0.003074 
Standard Error: 0.001292 
Incidence Rate: region-specific daily hospital admission rate for congestive heart failure admissions per 
person 65+ (ICD code 428) 
Population: population of ages 65 and older. 
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Ischemic Heart Disease 
The co-pollutant coefficient and standard error are calculated from a relative risk of 1.053 (95% CI 0.971-
1.143) for a 36 μg/m3 increase in PM2.5 in the 1-day lag GAM stringent model (Ito, 2003, Table 9). 
 
Functional Form: Log-linear 
Coefficient: 0.001435 
Standard Error: 0.001156 
Incidence Rate: region-specific daily hospital admission rate for ischemic heart disease admissions per 
person 65+ (ICD codes 411-414)9 
Population: population of ages 65 and old. 
 
 
 

                                                      
9 Lippmann et al. (2000)reports results for ICD codes 410-414.  In the benefits analysis, avoided nonfatal heart attacks are 
estimated using the results reported by Peters et al.(2001).  The baseline rate in the Peters et al. function is a modified heart 
attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In 
order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence 
rate used in this function.  
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Table 18.  Health Impact Functions for Particulate Matter and Emergency Room Visits 

Endpoint Name Author Year Location Age Other Pollutants 
in Model 

Metric Beta Std Error Functional 
Form 

Emergency Room 
Visits, Asthma 

Norris et al. 1999 Seattle, WA 0-17 NO2, SO2 D24HourMean 0.016527 0.004139 Log-linear 
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C.4  Emergency Room Visits 

Emergency Room Visits for Asthma (Norris, et al., 1999) 
 
Norris et al. (1999) examined the relation between air pollution in Seattle and childhood (<18) hospital 
admissions for asthma from 1995 to 1996.  The authors used air quality data for PM10, light scattering 
(used to estimate fine PM), CO, SO2, NO2, and O3 in a Poisson regression model with adjustments for day 
of the week, time trends, temperature, and dew point.  They found significant associations between 
asthma ER visits and light scattering (converted to PM2.5), PM10, and CO.   No association was found 
between O3, NO2, or SO2 and asthma ER visits, although O3 had a significant amount of missing data.  In 
multipollutant models with either PM metric (light scattering or PM10) and NO2 and SO2, the PM 
coefficients remained significant while the gaseous pollutants were not associated with increased asthma 
ER visits. 

In a model with NO2 and SO2, the PM2.5 coefficient and standard error are calculated from a relative risk 
of 1.17 (95% CI 1.08-1.26) for a 9.5 μg/m3 increase in PM2.5  (Norris, et al., 1999, p. 491). 

Functional Form: Log-linear 
Coefficient: 0.016527 
Standard Error: 0.004139 
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person <18 (ICD 
code 493) 
Population: population of ages under 18.
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Table 19.  Health Impact Functions for Particulate Matter and Acute Effects 

Endpoint Name Author Year Location Age Other Pollutants 
in Model 

Metric Beta Std Error Functional 
Form 

Minor Restricted Activity Days Ostro & Rothschild 1989 Nationwide 18-64 Ozone 24-hr avg 0.007410 0.000700 Log-linear 
Acute Bronchitis Dockery et al. 1996 24 communities 8-12  Annual 0.027212 0.017096 Logistic 
Work Loss Days Ostro 1987 Nationwide 18-64  24-hr avg 0.004600 0.000360 Log-linear 
Lower Respiratory Symptoms Schwartz and Neas 2000 6 U.S. cities 7-14  24-hr avg 0.019012 0.006005 Logistic 
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C.5  Minor Effects 
 
We include functions to estimate acute bronchitis, lower respiratory symptoms, minor restricted days, and 
work loss days. 
 

Acute Bronchitis (Dockery, et al., 1996) 
 
Dockery et al (1996) examined the relationship between PM and other pollutants on the reported rates of 
asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12 living in 
24 communities in U.S. and Canada.  Health data were collected in 1988-1991, and single-pollutant 
models were used in the analysis to test a number of measures of particulate air pollution.  Dockery et al. 
found that annual level of sulfates and particle acidity were significantly related  to bronchitis, and PM2.1 
and PM10 were marginally significantly related to bronchitis.1 They also found nitrates were linked to 
asthma, and sulfates linked to chronic phlegm.  It is important to note that the study examined annual 
pollution exposures, and the authors did not rule out that acute (daily) exposures could be related to 
asthma attacks and other acute episodes.  Earlier work, by Dockery et al.(1989), based on six U.S. cities, 
found acute bronchitis and chronic cough significantly related to PM15.  Because it is based on a larger 
sample, the Dockery et al (1996) study is the better study to develop a C-R function linking PM2.5 with 
bronchitis.  
 
Bronchitis was counted in the study only if there were “reports of symptoms in the past 12 months” 
(Dockery, et al., 1996, p. 501).  It is unclear, however, if the cases of bronchitis are acute and temporary, 
or if the bronchitis is a chronic condition.  Dockery et al. found no relationship between PM and chronic 
cough and chronic phlegm, which are important indicators of chronic bronchitis.  For this analysis, we 
assumed that the health impact function based on Dockery et al. is measuring acute bronchitis.  The health 
impact function is based on results of the single pollutant model reported in Table 1.  
 
The estimated logistic coefficient and standard error are based on the odds ratio (1.50) and 95% 
confidence interval (0.91-2.47) associated with being in the most polluted city (PM2.1 = 20.7 μg/m3) 
versus the least polluted city (PM2.1 = 5.8 μg/m3)(Dockery, et al., 1996, Tables 1 and 4). The original 
study used PM2.1, however, we use the PM2.1 coefficient and apply it to PM2.5 data. 
 
Functional Form: Logistic 
Coefficient: 0.027212 
Standard Error: 0.017096 
Incidence Rate: annual bronchitis incidence rate per person = 0.043 (American Lung Association, 2002c, 
Table 11) 
Population: population of ages 8-12. 
 

                                                      
1 The original study measured PM2.1, however when using the study's results we use PM2.5.  This makes only a negligible 
difference, assuming that the adverse effects of PM2.1 and PM2.5 are comparable. 
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Lower Respiratory Symptoms (Schwartz and Neas, 2000) 
 
Schwartz and Neas (2000) used logistic regression to link lower respiratory symptoms and cough in 
children with coarse PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if 
they were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study 
enrolled 1,844 children into a year-long study that was conducted in different years (1984 to 1988) in six 
cities.  The students were in grades two through five at the time of enrollment in 1984.  By the completion 
of the final study, the cohort would then be in the eighth grade (ages 13-14); this suggests an age range of 
7 to 14. 
 
The coefficient and standard error are calculated from the reported odds ratio (1.33) and 95% confidence 
interval (1.11-1.58) associated with a 15 μg/m3 change in PM2.5 (Schwartz and Neas, 2000, Table 2). 
 
Functional Form: Logistic 
Coefficient: 0.01901 
Standard Error: 0.006005 
Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012(Schwartz, et al., 
1994, Table 2). 
Population: population of ages 7 to 14. 
 

Minor Restricted Activity Days (Ostro, 1989) 
 
Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of minor restricted 
activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of 
the adult working population, ages 18 to 65, living in metropolitan areas.2  The annual national survey 
results used in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-week average 
ozone has highly variable association with RRADs and MRADs.  Controlling for ozone, two-week 
average PM2.5 was significantly linked to both health endpoints in most years.3  The health impact 
function for PM is based on this co-pollutant model. 
 
The study is based on a “convenience” sample of non-elderly individuals.  Applying the health impact 
function to this age group is likely a slight underestimate, as it seems likely that elderly are at least as 
susceptible to PM as individuals under 65.   
 
Using the results of the two-pollutant model, we developed separate coefficients for each year in the 
analysis, which were then combined for use in this analysis.  The coefficient is a weighted average of the 
coefficients in Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight: 
 

                                                      
2 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health 
Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  
From the study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the health impact function to 
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 

3The study used a two-week average pollution concentration; the health impact function uses a daily average, which is 
assumed to be a reasonable approximation.   
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The standard error of the coefficient is calculated as follows, assuming that the estimated year-specific 
coefficients are independent: This reduces down to: 
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Functional Form: Log-linear 
Coefficient: 0.00741 
Standard Error: 0.00070 
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 (Ostro and 
Rothschild, 1989, p. 243) 
Population: adult population ages 18 to 64. 
 

Work Loss Days (Ostro, 1987) 
 
Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted activity 
days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working 
population, ages 18 to 65, living in metropolitan areas.4  The annual national survey results used in this 
analysis were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels5were 
significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year 
variability in the results.  Separate coefficients were developed for each year in the analysis (1976-1981); 
these coefficients were pooled.  The coefficient used in the concentration-response function presented 
here is a weighted average of the coefficients in Ostro (1987, Table 3) using the inverse of the variance as 
the weight. 
 

                                                      
4 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health 
Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  
From the study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the health impact function to 
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 

5The study used a two-week average pollution concentration; the health impact function uses a daily average, which is 
assumed to be a reasonable approximation.   
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The study is based on a “convenience” sample of non-elderly individuals.  Applying the health impact 
function to this age group is likely a slight underestimate, as it seems likely that elderly are at least as 
susceptible to PM as individuals under 65.  On the other hand, the number of workers over the age of 65 
is relatively small; it was approximately 3% of the total workforce in 2001(U.S. Bureau of the Census, 
2002). 
 
The coefficient used in the health impact function is a weighted average of the coefficients in Ostro 
(1987, Table 3) using the inverse of the variance as the weight: 
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The standard error of the coefficient is calculated as follows, assuming that the estimated year-specific 
coefficients are independent: 
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This eventually reduces down to: 
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Functional Form: Log-linear 
Coefficient: 0.0046 
Standard Error: 0.00036 
Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (Adams, et al., 
1999, Table 41;U.S. Bureau of the Census, 1997, No. 22) 
Population: adult population ages 18 to 64. 
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Table 20.  Health Impact Functions for Particulate Matter and Asthma-Related Effects 
 
Endpoint Name Author Year Location Age Averaging 

Time1 
Beta Std Error Functional 

Form 

Asthma Exacerbation, Cough Ostro et al. 2001 Los Angeles, CA 6-18 24-hr avg 0.000985 0.000747 Logistic 
Asthma Exacerbation, Shortness of Breath Ostro et al. 2001 Los Angeles, CA 6-18 24-hr avg 0.002565 0.001335 Logistic 

Asthma Exacerbation, Wheeze Ostro et al. 2001 Los Angeles, CA 6-18 24-hr avg 0.001942 0.000803 Logistic 
Asthma Exacerbation, Cough Vedal et al. 1998 Vancouver, CAN 6-18 24-hr avg 0.007696 0.003786 Logistic 
Upper Respiratory Symptoms Pope et al. 1991 Utah Valley 9-11 24-hr avg 0.0036 0.0015 Logistic 
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C.6  Asthma-Related Effects 
 
We pool the results of studies by Ostro et al. (2001) and Vedal et al. (1998) to get an estimate of lower 
respiratory symptoms in asthmatics.  We pool results using a fixed/random-effects approach, similar to 
the analysis performed for Clean Air Interstate Rule (U.S. EPA, 2005b, Table 4-7).  In addition to the 
lower respiratory estimate, we include an upper respiratory estimate based on a study by Pope et al. 
(1991). 
 

Pooling Ostro et al. (2001) and Vedal et al. (1998) 
 
To characterize asthma exacerbations in children, we use two studies that followed panels of asthmatic 
children. Ostro et al. (2001) followed a group of 138 African-American children in Los Angeles for 13 
weeks, recording daily occurrences of respiratory symptoms associated with asthma exacerbations (e.g., 
shortness of breath, wheeze, and cough). This study found a statistically significant association between 
PM2.5, measured as a 12-hour average, and the daily prevalence of shortness of breath and wheeze 
endpoints. Although the association was not statistically significant for cough, the results were still 
positive and close to significance; consequently, we decided to include this endpoint, along with shortness 
of breath and wheeze, in generating incidence estimates.  
 
Vedal et al. (1998) followed a group of elementary school children, including 74 asthmatics, located on 
the west coast of Vancouver Island for 18 months including measurements of daily peak expiratory flow 
(PEF) and the tracking of respiratory symptoms (e.g., cough, phlegm, wheeze, chest tightness) through 
the use of daily diaries. Association between PM10 and respiratory symptoms for the asthmatic 
population was only reported for two endpoints: cough and PEF. Because it is difficult to translate PEF 
measures into clearly defined health endpoints that can be monetized, we only included the cough-related 
effect estimate from this study in quantifying asthma exacerbations.  
 
We employed the following pooling approach in combining estimates generated using effect estimates 
from the two studies to produce a single asthma exacerbation incidence estimate.  First, we pooled (with a 
fixed/random effects approach) the separate incidence estimates for shortness of breath, wheeze, and 
cough generated using effect estimates from the Ostro et al. (2001) study, because each of these endpoints 
is aimed at capturing the same overall endpoint (asthma exacerbations) and there could be overlap in their 
predictions. The pooled estimate from the Ostro et al. study is then pooled with the cough-related estimate 
generated using the Vedal study (again using a fixed/random effects approach). The rationale for this 
second pooling step is similar to the first; both studies are attempting to quantify the same overall 
endpoint (asthma exacerbations). 
 
To prevent double-counting, we followed EPA (2005b, p. 4-38) and focused the estimation on asthma 
exacerbations occurring in children and excluded adults from the calculation.  Asthma exacerbations 
occurring in adults are assumed to be captured in the general population endpoints such as work loss days 
and MRADs. Consequently, if we had included an adult-specific asthma exacerbation estimate, this 
would likely have double-counted incidence for this endpoint. However, because the general population 
endpoints do not cover children (with regard to asthmatic effects), an analysis focused specifically on 
asthma exacerbations for children (6 to 18 years of age) could be conducted without concern for double-
counting. 
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Asthma Exacerbation: Cough, Wheeze, and Shortness of Breath (Ostro, et al., 
2001) 
 
Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma exacerbation in 
African-American children (8 to 13 years old) from August to November 1993.  They used air quality 
data for PM10, PM2.5, NO2, and O3 in a logistic regression model with control for age, income, time trends, 
and temperature-related weather effects.1  Asthma symptom endpoints were defined in two ways: 
“probability of a day with symptoms” and “onset of symptom episodes”.  New onset of a symptom 
episode was defined as a day with symptoms followed by a symptom-free day.  The authors found cough 
prevalence associated with PM10 and PM2.5 and cough incidence associated with PM2.5, PM10, and NO2.  
Ozone was not significantly associated with cough among asthmatics. 
 
Note that the study focused on African-American children ages 8 to 13 years old.  We apply the function 
based on this study to the general population ages 6 to 18 years old. 
 

Asthma Exacerbation, Cough 
 
The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-1.07) for a 30 μg/m3 
increase in 12-hour average PM2.5 concentration(Ostro, et al., 2001, Table 4, p. 204).  
 
Functional Form: Logistic 
Coefficient: 0.000985 
Standard Error: 0.000747 
Incidence Rate: daily cough rate per person (Ostro, et al., 2001, p. 202)  = 0.145 
Population: asthmatic population ages 6 to 18 = 5.67%.2 
 

Asthma Exacerbation, Shortness of Breath 
 
The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.00-1.17) for a 30 μg/m3 
increase in 12-hour average PM2.5 concentration (Ostro, et al., 2001, Table 4, p. 204).  
 
Functional Form: Logistic 
Coefficient: 0.002565 
Standard Error: 0.001335 
Incidence Rate: daily shortness of breath rate per person (Ostro, et al., 2001, p. 202) = 0.074 
Population: asthmatic population ages 6 to 18 = 5.67%. 
 
 

                                                      
1 The authors note that there were 26 days in which PM2.5 concentrations were reported higher than PM10 concentrations.  
The majority of results the authors reported were based on the full dataset.  These results were used for the basis for the C-
R functions. 

2 The American Lung Association (2002a, Table 7) estimates asthma prevalence for children 5-17 at 5.67% (based on data 
from the 1999 National Health Interview Survey). 
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Asthma Exacerbation, Wheeze 
 
The coefficient and standard error are based on an odds ratio of 1.06 (95% CI 1.01-1.11) for a 30 μg/m3 
increase in 12-hour average PM2.5 concentration (Ostro, et al., 2001, Table 4, p. 204).  
 
Functional Form: Logistic 
Coefficient: 0.001942 
Standard Error: 0.000803 
Incidence Rate: daily wheeze rate per person (Ostro, et al., 2001, p. 202)   = 0.173 
Population: asthmatic population ages 6 to 18 = 5.67%. 
 

Asthma Exacerbation, Cough (Vedal, et al., 1998) 
 
Vedal et al. (1998) studied the relationship between air pollution and respiratory symptoms among 
asthmatics and non-asthmatic children (ages 6 to 13) in Port Alberni, British Columbia, Canada.  Four 
groups of elementary school children were sampled from a prior cross-sectional study: (1) all children 
with current asthma, (2) children without doctor diagnosed asthma who experienced a drop in FEV after 
exercise, (3) children not in groups 1 or 2 who had evidence of airway obstruction, and (4) a control 
group of children with matched by classroom.   
 
The authors used logistic regression and generalized estimating equations to examine the association 
between daily PM10 levels and daily increases in various respiratory symptoms among these groups.  In 
the entire sample of children, PM10 was significantly associated with cough, phlegm, nose symptoms, and 
throat soreness.  Among children with diagnosed asthma, the authors report a significant association 
between PM10 and cough symptoms, while no consistent effects were observed in the other groups.  Since 
the study population has an over-representation of asthmatics, due to the sampling strategy, the results 
from the full sample of children are not generalizeable to the entire population.  The health impact 
function presented below is based on results among asthmatics ages 6 to 18. 
 
The PM10 coefficient and standard error are based on an increase in odds of 8% (95% CI 0-16%) reported 
in the abstract for a 10 μg/m3 increase in daily average PM10. 
 
Functional Form: Logistic 
Coefficient: 0.007696 
Standard Error: 0.003786 
Incidence Rate: daily cough rate per person (Vedal, et al., 1998, Table 1, p. 1038)  = 0.086 
Population: asthmatic population ages 6 to 18 = 5.67%.3 
 
 

                                                      
3 The American Lung Association (American Lung Association, 2002a) estimates asthma prevalence for children 5-17 at 
5.67% (based on data from the 1999 National Health Interview Survey). 
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Upper Respiratory Symptoms (Pope, 1991) 
 
Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a variety of 
minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley 
from December 1989 through March 1990.  The children in the Pope et al. study were asked to record 
respiratory symptoms in a daily diary.  With this information, the daily occurrences of upper respiratory 
symptoms (URS) and lower respiratory symptoms (LRS) were related to daily PM10 concentrations.  Pope 
et al. describe URS as consisting of one or more of the following symptoms:  runny or stuffy nose; wet 
cough; and burning, aching, or red eyes.   
 
Levels of ozone, NO2, and SO2 were reported low during this period, and were not included in the 
analysis.  The sample in this study is relatively small and is most representative of the asthmatic 
population, rather than the general population.  The school-based subjects (ranging in age from 9 to 11) 
were chosen based on “a positive response to one or more of three questions: ever wheezed without a 
cold, wheezed for 3 days or more out of the week for a month or longer, and/or had a doctor say the ‘child 
has asthma’(Pope, 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were 
receiving treatment for asthma and were referred by local physicians.  Regression results for the school-
based sample (Pope, 1991, Table 5) show PM10 significantly associated with both upper and lower 
respiratory symptoms.  The patient-based sample did not find a significant PM10 effect.  The results from 
the school-based sample are used here. 
 
The coefficient and standard error for a one μg/m3 change in PM10 is reported in Table 5. 
 
Functional Form: Logistic 
Coefficient: 0.0036 
Standard Error: 0.0015 
Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope, 1991, Table 
2) 
Population: asthmatic population ages 9 to 11 = 5.67%4 of population ages 9 to 11. 
 

                                                      
4  The American Lung Association (2002a, Table 7) estimates asthma prevalence for children ages 5 to 17 at 5.67% (based 
on data from the 1999 National Health Interview Survey). 
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C.7  Calculating Threshold-Adjusted Health Impact Functions22 
 
Following the approach taken in OAQPS’ June 2005 particulate matter (PM) risk assessment (U.S. EPA, 
2005c), we used a 10 ug/m3 cutpoint for health impact functions.  The risk assessment noted that while 
there are likely biological thresholds in individuals for specific health responses, the available 
epidemiological studies do not support or refute the existence of thresholds at the population level for 
either long-term or short-term PM2.5 exposures within the range of air quality observed in the studies.  It 
may therefore be appropriate to consider health risks estimated not only with the reported log-linear or 
logistic C-R functions, but also with modified functions that approximate non-linear, sigmoidal-shaped 
functions that would better reflect possible population thresholds. 
 
We approximated hypothetical sigmoidal PM2.5 C-R functions by “hockeystick” functions based on the 
reported log-linear or logistic functions.  This approximation consisted of (1) imposing a cutpoint  (i.e., an 
assumed threshold) on the original C-R function, that is intended to reflect an inflection point in a typical 
sigmoidal shaped function, below which there is little or no population response, and (2) adjusting the 
slope of the original C-R function above the cutpoint.    
 
If the researchers in the original study fit a log-linear, linear, or logistic model through data that actually 
better support a sigmoidal or “hockeystick” form, the slope of the fitted curve would be smaller than the 
slope of the upward-sloping portion of the “true” hockeystick relationship, as shown in Figure 2 and 
Figure 3.  The horizontal portion of the data below the cutpoint would essentially cause the estimated 
slope to be biased downward relative to the “true” slope of the upward-sloping portion of the hockeystick.  
The slope of the upward-sloping portion of the hockeystick model should therefore be adjusted upward 
(from the slope of the reported C-R function), as shown in Figure 2.  If the data used in a study do not 
extend down below the cutpoint or extend only slightly below it, then the extent of the downward bias of 
the reported PM2.5 coefficient will be minimal, as illustrated in Figure 3. 
 

                                                      
22 The discussion in this section on the approach taken to adjust the PM2.5 coefficient in a threshold model is based 

on the discussion in Section 2.5.3 of: Abt Associates Inc., 2005.  “Particulate Matter Health Risk Assessment 
for Selected Urban Areas.”  Prepared by Abt Associates for Office of Air Quality Planning and Standards, U.S. 
EPA, Research Triangle Park, NC. June 2005. 
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Figure 2.  Relationship Between Estimated Log-Linear Concentration-Response Function and Hockeystick 
Model With Threshold C – General Case 
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Figure 3.  Relationship Between Estimated Log-Linear Concentration-Response Function and Hockeystick 
Model With Threshold C – Lowest Measured Level (LML) Close to Hypothetical Threshold 

 
 
 
We used a simple slope adjustment method based on the idea discussed above – that, if the data in the 
study were best described by a hockeystick model with a cutpoint at c, then the slope estimated in the 
study using a log-linear or logistic model would be approximately a weighted average of the two slopes of 
the hockeystick – namely, zero and the slope of the upward-sloping portion of the hockeystick.   If we let 
 
• LML denote the lowest measured PM level in the study, 
• c denote the cutpoint (for c > LML),2 
• HML denote the highest measured PM level in the study, 
• estβ denote the slope (the PM coefficient) estimated in the study (using a log-linear or logistic 

model), and 
• Tβ denote the “true” slope of the upward-sloping portion of the hockeystick, 
 
then, assuming the estimated coefficient reported by the study is (approximately) a weighted average of 
the slope below the cutpoint (0) and the slope above the cutpoint,   
 

                                                      
 2 If c< LML, no slope adjustment is needed. 
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That is, the “true” slope of the upward-sloping portion of the hockeystick would be the slope estimated in 
the study (using a log-linear or logistic model rather than a hockeystick model) adjusted by the inverse of 
the proportion of the range of PM levels observed in the study that was above the cutpoint.  Note that if 
the LML was below the estimated PRB (or if it was not available for the study), the estimated PRB was 
substituted for LML in the above equation. 
 
Table 21 presents the threshold adjustments that were used to multiply with both the mean coefficient 
estimate and its standard error. 
 

Table 21.  Threshold Adjustment Factors Based on Assumed Threshold of 10 ug/m3 

Endpoint Author Min Max Adj Note 
Mortality, All Cause Pope et al. (2002) 7.5 30 1.125  
Mortality, All Cause Laden et al (2006) 10.8 25.5 1.000  
Mortality, All Cause Woodruff et al. (1997) 11.9 68.8 1.000  
Chronic Bronchitis Abbey et al. (1995c) -- -- 1.000 Min and max not reported. 
AMI, Nonfatal Peters et al. (2001) 4.6 24.3 1.378 Min and max based on 5% and 95%. 
HA, various types Moolgavkar (2000b) 4 86 1.079  
HA, various types Moolgavkar (2003) 4 86 1.079  
HA, various types Ito (2003) 6 42 1.125 Min and max based on 5% and 95%. 
HA, Asthma Sheppard (2003) 6 32 1.182 Min and max based on 5% and 95%. 
ER Visits, Asthma Norris et al. (1999) 9 18.2 1.122  
MRAD Ostro and Rothschild (1989) -- -- 1.000 Study gave mean and std dev.  We estimate 

min is above threshold of 10. 
Acute Bronchitis Dockery et al. (1996) 5.8 20.7 1.393  
Work Loss Days Ostro (1987) -- -- 1.000 Study did not provide a mean, SD, or pollutant 

range. 
LRS Schwartz and Neas (2000) 7.2 86 1.037  
Asthma 
Exacerbation, 

Ostro et al. (2001) 4.5 208.7 1.028  

URS Pope et al. (1991) 11 195 1.000  
Asthma Exacerbation Vedal et al. (1998) 3 159 1.047 Min = policy-relevant background. Actual min 

was 0.2 in North and 0.5 in South. 
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Appendix D: Baseline Incidence Rates for Adverse 
Health Effects 
 

Health impact functions developed from log-linear or logistic models estimate the percent change in an 
adverse health effect associated with a given pollutant change.  In order to estimate the absolute change in 
incidence using these functions, we need the baseline incidence rate of the adverse health effect.  This 
appendix describes the data used to estimate baseline incidence rates for the health effects considered in 
this analysis. 

Note that the level of geographic aggregation varies with the type of health effect, due to data limitations.  
The mortality data are available at the county-level, and would seem appropriate for PIE’s county-level 
results.  For hospital admissions, in which we have data for four broad regions, the level of aggregation is 
greater than the county-level, and as a result, the health impacts estimates for any given county are more 
uncertain.  Similarly, for chronic bronchitis, lower respiratory symptoms, and minor restricted activity 
days – health effects with national incidence rates – we introduce additional uncertainty to the estimates.  
In some instances we will likely over estimate, and in others under estimate, however, on the whole, we 
hope to have a reasonably unbiased estimate. 
 

D.1  Mortality  
 
Age, cause, and county-specific mortality rates were originally obtained from the U.S. Centers for 
Disease Control (CDC) for the years 1996 through 1998.  However, since mortality rates are projected to 
change significantly over time due to the general increase in life-expectancy, we calibrated our county-
specific rates with U.S. Census forecasts of national, all-cause mortality rates for 2010, 2015, and 2020.  
Table 22 presents population-weighted national mortality rates by year and age group. 

 
Table 22.  National All-Cause Mortality Rates for Selected Conditions, by Year and Age Group 

 
Year 

Mortality Rate by Age Group (deaths per 100 people per year) 

Infants 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

1996-1998 0.246 0.119 0.211 0.437 1.056 2.518 5.765 15.160 

2010 0.217 0.107 0.181 0.377 0.908 2.094 5.087 13.850 

2015 0.204 0.103 0.170 0.357 0.858 1.966 4.742 13.473 

2020 0.192 0.099 0.158 0.335 0.819 1.890 4.418 13.067 

Source: We obtained county-level 1996-1998 mortality rates from the CDC Wonder (http://wonder.cdc.gov/).  
Year 2010 and 2015 forecasted rates were estimated based on the U.S. Census Burean projected life tables 
(http://www.census.gov/population/www/projections/natdet-D5.html) and population forecasts 
(http://www.census.gov/ipc/www/usinterimproj/).  Note that county-specific mortality rates are used in PIE’s 
health impact functions.  Also note that the rates presented here are population-weighted by the population for the 
year specific to the rate estimate. 
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In developing our county mortality incidence projections, we multiplied the county-specific all-cause 
mortality rates for 1996-1998 with the ratio of the future year (e.g., 2010) national all-cause rate to the 
1996-1998 national all-cause rate. 

 

CDC maintains an online data repository of health statistics, CDC Wonder, accessible at 
http://wonder.cdc.gov/.  The mortality rates provided are derived from U.S. death records and U.S. 
Census Bureau post-censal population estimates.  We averaged mortality rates across three years (1996 
through 1998) to provide more stable estimates.  When estimating rates for age groups that differed from 
the CDC Wonder groupings, we assumed that rates were uniform across all ages in the reported age 
group. 

 

D.2  Hospitalizations 
 
Regional hospitalization counts were obtained from the National Center for Health Statistics’ (NCHS) 
National Hospital Discharge Survey (NHDS).  NHDS is a sample-based survey of non-Federal, short-stay 
hospitals (<30 days)1, and is the principal source of nationwide hospitalization data.  The survey collects 
data on patient characteristics, diagnoses, and medical procedures. 

Public use data files for the year 1999 survey were downloaded2 and processed to estimate hospitalization 
counts by region.  NCHS groups states into four regions using the following groupings defined by the 
U.S. Bureau of the Census: 

 

· Northeast - Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New 
York, New Jersey, Pennsylvania 

· Midwest - Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North 
Dakota, South Dakota, Nebraska, Kansas 

· South - Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, 
South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, 
Louisiana, Oklahoma, Texas 

· West - Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, 
Washington, Oregon, California, Alaska, Hawaii 

 
                                                      
1The following hospital types are excluded from the survey: hospitals with an average patient length of stay of greater than 
30 days, federal, military, Department of Veterans Affairs hospitals, institutional hospitals (e.g. prisons), and hospitals 
with fewer than six beds. 

2 Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHDS/ 
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We calculated per capita hospitalization rates, by dividing these counts by the estimated regional 
population estimates for 1999 that we derived from the U.S. Bureau of the Census and the population 
projections used by NHDS to generate the counts.  Note that NHDS started with hospital admission 
counts, based on a sample of admissions, and then they used population estimates to generate population-
weighted hospital admission counts that are representative of each region.  This weighting used forecasts 
of 1999 population data.  Ideally, we would use these same forecasts to generate our admission rates. 
However, while NHDS presented counts of hospital admissions with a high degree of age specificity, it 
presented regional population data for only four age groups: 0-14, 15-44, 45-64, and 65+.  Using only the 
NHDS data, we would be limited to calculating regional admission rates for four groups.  Because we are 
interested in a broader range of age groups, we turned to 2000 Census. 

We used the 2000 Census to obtain more age specificity, and then corrected the 2000 Census figures so 
that the total population equaled the total for 1999 forecasted by NHDS.  That is, we sued the following 
procedure: (1) we calculated the count of hospital admissions by region in 1999 for the age groups of 
interest, (2) we calculated the 2000 regional populations corresponding to these age groups, (3) calculated 
regional correction factors, that equal the regional total population in 1999 divided by the regional total 
population in 2000 by region, (4) multiplied the 2000 population estimates by these correction factors, 
and (5) divided the 1999 regional count of hospital admissions by the estimated 1999 population. 

The endpoints in hospitalization studies are defined using different combinations of ICD codes.  Rather 
than generating a unique baseline incidence rate for each ICD code combination, for the purposes of this 
analysis, we identified a core group of hospitalization rates from the studies and applied the appropriate 
combinations of these rates in the C-R functions:  

 

 • all respiratory (ICD-9 460-519) 

 • chronic lung disease (ICD-9 490-496) 

 • asthma (ICD-9 493) 

 • pneumonia (ICD-9 480-487) 

 • acute bronchitis (ICD-9 466) 

 • acute laryngitis (ICD-9 464) 

 • all cardiovascular (ICD-9 390-459) 

 • ischemic heart disease (ICD-9 410-414) 

 • dysrhythmia (ICD-9 427) 

 • congestive heart failure (ICD-9 428) 

 

For each C-R function, we selected the baseline rate or combination of rates that most closely matches to 
the study endpoint definition.  For studies that define chronic lung disease as ICD 490-492, 494-496, we 
subtracted the incidence rate for asthma (ICD 493) from the chronic lung disease rate (ICD 490-496).  In 
some cases, the baseline rate will not match exactly to the endpoint definition in the study.  For example, 
Burnett et al. (2001)studied the following respiratory conditions in infants <2 years of age: ICD 464.4, 
466, 480-486, 493.  For this C-R function we apply an aggregate of the following rates: ICD 464, 466, 
480-487, 493.  Although they do not match exactly, we assume that relationship observed between the 
pollutant and study-defined endpoint is applicable for the additional codes.  Table 23 presents a summary 
of the national hospitalization rates for 1999 from NHDS.  
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Table 23.  Hospitalization Rates, by Region and Age Group 

Hospitalization 
Category 

ICD-9 
Codes 

Hospitalization Rate by Age Group  
(admissions per 100 people per year) 

Under 2 2-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 
Respiratory 
all respiratory 460-519 5.447 0.545 0.271 0.318 0.446 0.763 1.632 3.506 6.276 9.746 
acute laryngitis 464 0.285 0.029 0.002 0.001 0.002 0.008 0.000 0.001 0.009 0.005 
acute bronchitis 466 2.428 0.028 0.017 0.014 0.017 0.027 0.040 0.090 0.192 0.364 
pneumonia 480-487 1.498 0.168 0.069 0.103 0.155 0.256 0.561 1.344 2.781 5.597 
asthma 493 0.730 0.226 0.081 0.109 0.098 0.144 0.161 0.182 0.231 0.258 
chronic lung disease 490-496 0.769 0.232 0.089 0.124 0.148 0.301 0.711 1.383 1.907 1.574 
Cardiovascular 
all cardiovascular 390-429 0.089 0.023 0.052 0.146 0.534 1.552 3.384 6.611 10.032 13.192
ischemic heart 
disease 

410-414 0.026 0.002 0.008 0.031 0.231 0.902 2.021 3.345 4.193 4.099 

dysrhythmia 427 0.015 0.010 0.017 0.027 0.076 0.158 0.392 1.014 1.709 2.203 
congestive heart 
failure 

428 0.016 0.001 0.005 0.011 0.055 0.160 0.469 1.226 2.677 4.948 

Source: As described in the text, we obtained the regional count of hospital admissions from National Hospital 
Discharge Survey (NHDS), and we obtained the population data from the 2000 U.S. Census and NHDS. 

 

D.3  Emergency Room Visits for Asthma 
 
Regional asthma emergency room visit counts were obtained from the National Hospital Ambulatory 
Medical Care Survey (NHAMCS).  NHAMCS is a sample-based survey, conducted by NCHS, designed 
to collect national data on ambulatory care utilization in hospital emergency and outpatient departments 
of non-Federal, short-stay hospitals (<30 days).1  

Public use data files for the year 2000 survey were downloaded2 and processed to estimate hospitalization 
counts by region.  We obtained population estimates from the 2000 U.S. Census.  The NCHS regional 
groupings described above were used to estimate regional emergency room visit rates.  Table 24 presents 
the estimated asthma emergency room rates by region. 

 

                                                      
1 The target universe of the NHAMCS is in-person visits made in the United States to emergency and outpatient 
departments of non-Federal, short-stay hospitals (hospitals with an average stay of less than 30 days) or those whose 
specialty is general (medical or surgical) or children’s general.  

2 Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHAMCS/ 
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Table 24.  Emergency Room Visit Rates for Asthma, by Region and Age Group 
 

ER Category ICD-9 Code Region 
ER Visit Rate  

(visits per 100 people per year) 

0-18 18-64 65+ 

asthma 493 Northeast 0.761 0.802 0.300 

  Midwest 1.476 0.877 0.334 

  South 1.243 0.420 0.192 

  West 0.381 0.381 0.137 

Source: We obtained ER visit counts for the year 2000 from the National Hospital Ambulatory Medical Care 
Survey (NHAMCS) and population data were obtained from the 2000 U.S. Census. 

 
 

D.4  Nonfatal Heart Attacks  
 
The relationship between short-term particulate matter exposure and heart attacks was quantified in a 
case-crossover analysis by Peters et al (2001).  The study population was selected from heart attack 
survivors in a medical clinic.  Therefore, the applicable population to apply to the C-R function is all 
individuals surviving a heart attack in a given year.  Several data sources are available to estimate the 
number of heart attacks per year.  For example, several cohort studies have reported estimates of heart 
attack incidence rates in the specific populations under study.  However, these rates depend on the 
specific characteristics of the populations under study and may not be the best data to extrapolate 
nationally.  The American Heart Association reports approximately 540,000 new heart attacks per year 
using data from a multi-center study (Haase, 2002). Exclusion of heart attack deaths reported by CDC 
Wonder yields approximately 330,000 nonfatal cases per year.3 
 
An alternative approach to the estimation of heart attack rates is to use data from the National Hospital 
Discharge Survey, assuming that all heart attacks that are not instantly fatal will result in a hospitalization.  
According to the National Hospital Discharge Survey, in 1999 there were approximately 829,000 
hospitalizations due to heart attacks (acute myocardial infarction: ICD-9 410) (Popovic, 2001, Table 8).  
We used regional hospitalization rates over estimates extrapolated from cohort studies because the former 
is part of a nationally representative survey with a larger sample size, which is intended to provide 
reliable national estimates.  As additional information is provided regarding the American Heart 
Association methodology, we will evaluate the usefulness of this estimate of heart attack incidence. 
 
Rosamond et al. (1999) reported that approximately six percent of male and eight percent of female 
hospitalized heart attack patients die within 28 days (either in or outside of the hospital).  We, therefore, 
applied a factor of 0.93 to the count of hospitalizations to estimate the number of nonfatal heart attacks 
per year.  To estimate the rate of nonfatal heart attack, we divided the count by the population estimate 
for 2000 from the U.S. Census.  Table 25 presents the regional nonfatal heart attack incidence rates. 
 

                                                      
3 Note that we excluded fatal heart attacks to avoid double-counting mortality, as well as to be consistent with prior EPA 
regulatory impact assessments (e.g., Clean Air Interstate Rule). 
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Table 25.  Nonfatal Heart Attack Rates, by Region and Age Group 

Endpoint (ICD codes) Region 
Nonfatal Heart Attack Rate 

(cases per 100 people per year) a 

0-18 18-64 65+ 

Nonfatal heart attacks (ICD-9 
410) 

Northeast 0.0000 0.2167 1.6359 

 Midwest 0.0003 0.1772 1.4898 

 South 0.0006 0.1620 1.1797 

 West 0.0000 0.1391 1.1971 
a Rates are based on data from the 1999 National Hospital Discharge Survey (NHDS) and an estimate from 
Rosamond et al. (1999) that approximately 7% of individuals hospitalized for a heart attack die within 28 days. 

 

D.5  Other Acute and Chronic Effects 
 
For many of the minor effect studies, baseline rates from a single study are often the only source of 
information, and we assume that these rates hold for locations in the U.S.  The use of study-specific 
estimates are likely to increase the uncertainty around the estimate because they are often estimated from 
a single location using a relatively small sample.  These endpoints include: acute bronchitis, chronic 
bronchitis, upper respiratory symptoms, lower respiratory symptoms.  Table 26 presents a summary of 
these baseline rates.   
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Table 26.  Selected Acute and Chronic Effects Rates 

Endpoint Age Parameter a Rate Source 

Acute Bronchitis 8-12 Incidence 4.300 (American Lung Association, 
2002c, Table 11) 

Chronic Bronchitis 27+ Incidence 0.378 (Abbey, et al., 1993b, Table 3) 

 18-44  Prevalence 3.67% 
(American Lung Association, 
2002b, Table 4)  45-64  5.05% 

 65+  5.87% 

Lower Respiratory 
Symptoms (LRS) 7-14 Incidence 43.8 (Schwartz, et al., 1994, Table 2) 

Minor Restricted Activity 
Days (MRAD) 18-64 Incidence 780.0 (Ostro and Rothschild, 1989, p. 243)

Work Loss Day (WLD) 18-64 Incidence 217.2 

(Adams, et al., 1999, Table 41); 
(U.S. Bureau of the Census, 1997) 

 18-24  197.1 

 25-44  247.5 

 45-64  179.6 

a The incidence rate is the number of cases per 100 people per year.  Prevalence refers to the fraction of people 
that have a particular illness during a particular time period. 

 

Acute Bronchitis 
 
The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the American Lung 
Association (2002c).  The authors reported an annual incidence rate per person of 0.043, derived from the 
1996 National Health Interview Survey. 
 

Chronic Bronchitis  
 
The annual incidence rate for chronic bronchitis is estimated from data reported by Abbey et al.(1993a).  
The rate is calculated by taking the number of new cases (234), dividing by the number of individuals in 
the sample (3,310), dividing by the ten years covered in the sample, and then multiplying by one minus 
the reversal rate (estimated to be 46.6% based on Abbey et al. (1995c, Table 1)).  We then multiplied this 
result by 100 to calculate an annual incidence rate per 100 people of 0.378. 
 
Age-specific incidence rates are not available.  Abbey et al. (1995c, Table 1) did report the incidences by 
three age groups (25-54, 55-74, and 75+) for “cough type” and “sputum type” bronchitis.  However, they 
did not report an overall incidence rate for bronchitis by age-group.  Since, the cough and sputum types of 
bronchitis overlap to an unknown extent, we did not attempt to generate age-specific incidence rates for 
the over-all rate of bronchitis. 
 
We obtained the annual prevalence rate for chronic bronchitis from the American Lung 
Association,(American Lung Association, , Table 4).  Based on an analysis of 1999 National Health 
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Interview Survey data, they estimated a rate of 0.0443 for persons 18 and older, they also reported the 
following prevalence rates for people in the age groups 18-44, 45-64, and 65+: 0.0367, 0.0505, and 
0.0587, respectively. 
 

Lower Respiratory Symptoms 
Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, chest pain, 
phlegm, wheeze.  The proposed yearly incidence rate for 100 people, 43.8, is based on the percentiles in 
Schwartz et al (1994, Table 2).  The authors did not report the mean incidence rate, but rather reported 
various percentiles from the incidence rate distribution.  The percentiles and associated per person per day 
values are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 0.34 percent.  
The most conservative estimate consistent with the data are to assume the incidence per person per day is 
zero up to the 75th percentile, a constant 0.29 percent between the 75th and 90th percentiles, and a constant 
0.34 percent between the 90th and 100th percentiles.  Alternatively, assuming a linear slope between the 
50th and 75th, 75th and 90th, and 90th to 100th percentiles, the estimated mean incidence rate per person per 
day is 0.12 percent.23  We used the latter approach in this analysis, and then multiplied by 100 and by 365 
to calculate the incidence rate per 100 people per year. 
 

Minor Restricted Activity Days (MRAD) 
 
Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of MRADs (7.8).  
We multiplied this estimate by 100 to get an annual rate per 100 people. 
 

Work Loss Days 
 

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 National 
Health Interview Survey (Adams, et al., 1999, Table 41).  They reported a total annual work loss days of 
352 million for individuals ages 18 to 65.  The total population of individuals of this age group in 1996 
(162 million) was obtained from (U.S. Bureau of the Census, 1997).  The average annual rate of work loss 
days per individual (2.17) was multiplied by 100 to obtain the average yearly work-loss-day rate of 217 
per 100 people.  Using a similar approach, we calculated work-loss-day rates for ages 18-24, 25-44, and 
45-64, respectively. 

 

D.6  Asthma-Related Health Effects  
 
Several studies have examined the impact of air pollution on asthma development or exacerbation in the 
asthmatic population.  Many of the baseline incidence rates used in the C-R functions are based on study-
specific estimates.  The baseline rates for the various endpoints are described below and summarized in 
Table 27. 

 

                                                      
23 For example, the 62.5th percentile would have an estimated incidence rate per person per day of 0.145 percent. 
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Table 27.  Asthma-Related Health Effects Rates 

Endpoint Age Parameter a Rate Source 

Cough 6-18 Incidence 3,139.0 (Vedal, et al., 1998, Table 1, p. 1038) 

Asthma Exacerbation, Cough 6-18 Incidence 5,292.5 (Ostro, et al., 2001, p. 202) 

Asthma Exacerbation, Shortness of 
Breath 6-18 Incidence 2,701.0 (Ostro, et al., 2001, p. 202) 

Asthma Exacerbation, Wheeze 6-18 Incidence 6,314.5 (Ostro, et al., 2001, p. 202) 

Asthma 6-18 Prevalence 5.67% (American Lung Association, 2002a, 
Table 7) 

Upper Respiratory Symptoms (URS)2 9-11 Incidence 12,479.4 (Pope, et al., 1991, Table 2) 
a The incidence rate is the number of cases per 100 people per year.  Prevalence refers to the fraction of people that 
have a particular illness during a particular time period. 
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Appendix E: Population Forecasts 

 
To estimate the change in population exposure to air pollution, we use projections based on economic 
forecasting models developed by Woods & Poole (2001) . The Woods and Poole (WP) database contains 
county-level projections of population by age, sex, and race out to 2030. Projections in each county are 
determined simultaneously with every other county in the United States to take into account patterns of 
economic growth and migration.  The sum of growth in county-level populations is constrained to equal a 
previously determined national population growth, based on Bureau of Census estimates.  The projection 
years used for this particular analysis are 2010, 2015, and 2020. 
 
According to WP, linking county-level growth projections together and constraining to a national-level 
total growth avoids potential errors introduced by forecasting each county independently. County 
projections are developed in a four-stage process. First, national-level variables such as income, 
employment, and populations are forecasted. Second, employment projections are made for 172 economic 
areas defined by the Bureau of Economic Analysis, using an “export-base” approach, which relies on 
linking industrial sector production of non-locally consumed production items, such as outputs from 
mining, agriculture, and manufacturing with the national economy.  
 
The export-based approach requires estimation of demand equations or calculation of historical growth 
rates for output and employment by sector. Third, population is projected for each economic area based 
on net migration rates derived from employment opportunities and following a cohort component method 
based on fertility and mortality in each area. Fourth, employment and population projections are repeated 
for counties, using the economic region totals as bounds.  The age, sex, and race distributions for each 
region or county are determined by aging the population by single year of age by sex and race for each 
year through 2020 based on historical rates of mortality, fertility, and migration. 
 
The WP projections of county-level population are based on historical population data from 1969 through 
1999 and do not include the 2000 Census results. Given the availability of detailed 2000 Census data, we 
constructed adjusted county-level population projections for each future year using a two-stage process. 
First, we constructed ratios of the projected WP populations in a future year to the projected WP 
population in 2000 for each future year by age, sex, and race. Second, we multiplied the block-level 2000 
Census population data by the appropriate age-, sex-, and race-specific WP ratio for the county containing 
the census block for each future year. This results in a set of future population projections that is 
consistent with the most recent detailed Census data. 
 
The unit of analysis in PIE is the county, in the years 2010, 2015, and 2020.  To forecast population levels 
for these years, we started with county-level data from the 2000 U.S. Census (GeoLytics Inc., 2002b), and 
then scaled these data with the ratio of the county-level forecast for the future year (e.g., 2010) over the 
2000 county-level population level.  In developing the population scaling ratios, we used the county-level 
forecasts from WP.  For any given county “c,” we use the following forecasting procedure: 

age age
age
agec COBRA c Census

c Woods Poole

c Woods Poole
4 9 2010 4 9 2000

4 9 2010

4 9 2000
− −

−

−

= ⋅, , , , , ,
, , , &

, , , &
.
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Appendix F: Economic Value of Health Effects 

 
This appendix presents the mean estimate of the unit values used in this analysis.  Table 28 lists these unit 
values.  Note that because of an assumed rise in income between 2010, 2015, and 2020, some are 
progressively higher in the latter two years.  
 
Table 28.  Unit Values for Economic Valuation of Health Endpoints by Income Year (2006 $) 

   Unit Value  
Health Endpoint Age Range 2010 2015 2020 
Mortality 0 - 99 $7,300,000 $7,700,000 $8,000,000 
Chronic Bronchitis 27 - 99 $440,000 $470,000 $490,000 
Acute Myocardial Infarction, Nonfatal 0 - 24 $85,000 $85,000 $85,000 
Acute Myocardial Infarction, Nonfatal 25 - 44 $96,000 $96,000 $96,000 
Acute Myocardial Infarction, Nonfatal 45 - 54 $100,000 $100,000 $100,000 
Acute Myocardial Infarction, Nonfatal 55 - 64 $180,000 $180,000 $180,000 
Acute Myocardial Infarction, Nonfatal 65 - 99 $85,000 $85,000 $85,000 
HA, All Cardiovascular (less AMI) 18 - 64 $29,000 $29,000 $29,000 
HA, All Cardiovascular (less AMI) 65 - 99 $27,000 $27,000 $27,000 
HA, Asthma 0 - 64 $10,000 $10,000 $10,000 
HA, Chronic Lung Disease 65 - 99 $17,000 $17,000 $17,000 
HA, Chronic Lung Disease (less Asthma) 18 - 64 $16,000 $16,000 $16,000 
HA, Congestive Heart Failure 65 - 99 $20,000 $20,000 $20,000 
HA, Dysrhythmia 65 - 99 $20,000 $20,000 $20,000 
HA, Ischemic Heart Disease (less AMI) 65 - 99 $33,000 $33,000 $33,000 
HA, Pneumonia 65 - 99 $23,000 $23,000 $23,000 
Asthma ER Visits 0 - 17 $370 $370 $370 
Acute Bronchitis 7 - 14 $430 $440 $440 
Lower Resp. Symptoms 9 - 11 $19 $19 $19 
Upper Resp. Symptoms 18 - 64 $30 $30 $31 
MRAD 18 - 64 $61 $62 $63 
Work Loss Days 18 - 99 ** ** ** 
Asthma Exacerbation, Cough 6 - 18 $52 $53 $53 
Asthma Exacerbation, Shortness of Breath 6 - 18 $52 $53 $53 
Asthma Exacerbation, Wheeze 6 - 18 $52 $53 $53 

NOTE: Numbers rounded to two significant digits.   
* Mortality value after adjustment for 20-year lag. 
** County-specific median daily wage. 
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F.1  Valuing Premature Mortality 
 
EPA has estimated the monetary benefit of reducing premature mortality risk using the VSL approach, 
which is a summary measure for the value of small changes in mortality risk experienced by a large 
number of people. The mean value of avoiding one statistical death is assumed to be $4.8 million in 1990 
dollars and 1990 income levels. The rationale for this choice is discussed in EPA’s 2010 Final NO2 
NAAQS RIA.24  

EPA (2005b, p. 4-56) assumed that some of the incidences of premature mortality related to PM 
exposures occur in a distributed fashion over the 20 years following exposure. To take this into account in 
the valuation of reductions in premature mortality, we applied an annual 3 percent discount rate to the 
value of premature mortality occurring in future years. 

There are a number of uncertainties in this estimate.  The health science literature on air pollution 
indicates that several human characteristics affect the degree to which mortality risk affects an individual. 
For example, some age groups appear to be more susceptible to air pollution than others (e.g., the elderly 
and children). Health status prior to exposure also affects susceptibility. An ideal benefits estimate of 
mortality risk reduction would reflect these human characteristics, in addition to an individual’s WTP to 
improve one’s own chances of survival plus WTP to improve other individuals’ survival rates.  

The ideal measure would also take into account the specific nature of the risk reduction commodity that is 
provided to individuals, as well as the context in which risk is reduced.  To measure this value, it is 
important to assess how reductions in air pollution reduce the risk of dying from the time that reductions 
take effect onward and how individuals value these changes. Each individual’s survival curve, or the 
probability of surviving beyond a given age, should shift as a result of an environmental quality 
improvement. For example, changing the current probability of survival for an individual also shifts 
future probabilities of that individual’s survival. This probability shift will differ across individuals 
because survival curves depend on such characteristics as age, health state, and the current age to which 
the individual is likely to survive.   

 

F.2  Valuing Chronic Bronchitis 
 
PM-related chronic bronchitis is expected to last from the initial onset of the illness throughout the rest of 
the individual’s life.  WTP to avoid chronic bronchitis would therefore be expected to incorporate the 
present discounted value of a potentially long stream of costs (e.g., medical expenditures and lost 
earnings) as well as WTP to avoid the pain and suffering associated with the illness.  Both WTP and COI 
estimates are currently available in BenMAP.    

Two contingent valuation studies, Viscusi et al. (1991)and Krupnick and Cropper(1992),  provide 
estimates of WTP to avoid a case of chronic bronchitis.  Viscusi et al. (1991)and Krupnick and Cropper 
(1992) were experimental studies intended to examine new methodologies for eliciting values for 
morbidity endpoints.  Although these studies were not specifically designed for policy analysis, they can 
be used to provide reasonable estimates of WTP to avoid a case of chronic bronchitis.  As with other 
contingent valuation studies, the reliability of the WTP estimates depends on the methods used to obtain 
the WTP values.  The Viscusi et al. and the Krupnick and Cropper studies are broadly consistent with 
current contingent valuation practices, although specific attributes of the studies may not be. 
                                                      
24 See: page 4-7 at: http://www.epa.gov/ttnecas1/regdata/RIAs/FinalNO2RIAfulldocument.pdf.  
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The study by Viscusi et al. (1991)used a sample that is larger and more representative of the general 
population than the study by Krupnick and Cropper(1992), which selected people who have a relative 
with the disease.  However, the chronic bronchitis described to study subjects in the Viscusi study is 
severe, whereas a pollution-related case may be less severe. 

The relationship between the severity of a case of chronic bronchitis and WTP to avoid it was estimated 
by Krupnick and Cropper(1992).  We used that estimated relationship to derive a relationship between 
WTP to avoid a severe case of chronic bronchitis, as described in the Viscusis study, and WTP to avoid a 
less severe case.  The estimated relationship (see Table 4 in Krupnick and Cropper) can be written as: 

 

   

 

where α denotes all the other variables in the regression model and their coefficients, β is the coefficient 
of sev, estimated to be 0.18, and sev denotes the severity level (a number from 1 to 13).  Let x (< 13) 
denote the severity level of a pollution-related case of chronic bronchitis, and 13 denote the highest 
severity level (as described in Viscusi, et al., 1991).  Then 
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Subtracting one equation from the other, 

 

 

 

or 
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Exponentiating and rearranging terms,  

 

 

Because this function is non-linear, the expected value of WTP for a pollution-related case of CB cannot 
be obtained by using the expected values of the three uncertain inputs in the function (doing that will 
substantially understate mean WTP). 
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F.3  Valuing Non-Fatal Myocardial Infarction 
 
We are not able to identify a suitable WTP value for reductions in the risk of non-fatal heart attacks.  
Instead, we have used a cost-of-illness unit value with two components: the direct medical costs and the 
opportunity cost (lost earnings) associated with the illness event.  Because the costs associated with a 
heart attack extend beyond the initial event itself, we considered costs incurred over several years.  For 
opportunity costs, we used values derived from Cropper and Krupnick(Cropper and Sussman, 1990), 
originally used in the 812 Retrospective Analysis of the Clean Air Act(U.S. EPA, 1997).  For the direct 
medical costs, we found three possible sources in the literature. 

Wittels et al. (1990) estimated expected total medical costs of myocardial infarction over five years to be 
$51,211 (in 1986$) for people who were admitted to the hospital and survived hospitalization.  (There 
does not appear to be any discounting used.)  Using the CPI-U for medical care, the Wittels et al. estimate 
is $109,474 in year 2000$.  This estimated cost is based on a medical cost model, which incorporated 
therapeutic options, projected outcomes and prices (using “knowledgeable cardiologists” as consultants).   

The model used medical data and medical decision algorithms to estimate the probabilities of certain 
events and/or medical procedures being used.  The authors noted that the average length of hospitalization 
for acute myocardial infarction has decreased over time (from an average of 12.9 days in 1980 to an 
average of 11 days in 1983).  Wittels et al. used 10 days as the average in their study.  It is unclear how 
much further the length of stay may have decreased from 1983 to the present.  The average length of stay 
for ICD code 410 (myocardial infarction) in 2000 is 5.5 days (AHRQ 2000). However, this may include 
patients who died in the hospital (not included among our non-fatal cases), whose length of stay was 
therefore substantially shorter than it would be if they hadn’t died. 

Eisenstein et al. (2001)estimated 10-year costs of $44,663, in 1997$, or $49,651 in 2000$ for myocardial 
infarction patients, using statistical prediction (regression) models to estimate inpatient costs.  Only 
inpatient costs (physician fees and hospital costs) were included. 

Russell et al. (1998)estimated first-year direct medical costs of treating nonfatal myocardial infarction of 
$15,540 (in 1995$), and $1,051 annually thereafter.  Converting to year 2000$, that would be $23,353 for 
a 5-year period (without discounting), or $29,568 for a ten-year period. 

As seen in Table 29, the three different studies provided significantly different values.  We have not 
adequately resolved the sources of differences in the estimates.  Because the wage-related opportunity 
cost estimates from Cropper and Krupnick (1990) cover a 5-year period, we used a simple average of the 
two estimates for medical costs that similarly cover a 5-year period, or $62,495.  We added this to the 5-
year opportunity cost estimate.  Table 30 gives the resulting estimates. 

 



 
Abt Associates Inc.   88      July 2010 

Table 29.  Summary of Studies Valuing Reduced Incidences of Myocardial Infarction 

Study Direct Medical Costs 
 (2000 $) a 

Over an x-year period, for x = 

(Wittels, et al., 1990) $109,474 5 

(Russell, et al., 1998) $22,331 5 

(Eisenstein, et al., 2001) $49,651 10 

(Russell, et al., 1998) $27,242 10 
a Wittels et al. did not appear to discount costs incurred in future years.  The values for the other two studies are 
based on a three percent discount rate. 

 

 

Table 30.  Estimated Costs Over a 5-Year Period of a Non-Fatal Myocardial Infarction 

Age Group Opportunity Cost  
(2000 $)  a 

Medical Cost 
(2000 $)  b 

Total Cost  
(2000 $) 

0 - 24 $0 $65,902 $65,902 

25-44 $8,774 $65,902 $74,676 

45 - 54 $12,932 $65,902 $78,834 

55 - 65 $74,746 $65,902 $140,649 

> 65 $0 $65,902 $65,902 
a From Cropper and Krupnick(1990).  Present discounted value of 5 yrs of lost earnings, at 3% discount rate, adjusted 
from 1977$ to 2000$ using CPI-U “all items”. 
b An average of the 5-year costs estimated by Wittels et al. (1990)and Russell et al.(1998).  Note that Wittels et al. 
appears not to have used discounting in deriving a 5-year cost of $109,474;  Russell et al. estimated first-year direct 
medical costs and annual costs thereafter.  The resulting 5-year cost is $22,331, using a 3% discount rate.  Medical 
costs were inflated to 2000$ using CPI-U for medical care. 
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F.4  Valuing Hospital Admissions 
 
Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity, the non-
market costs of treating illness (i.e., air, water and solid waste pollution from hospitals and the 
pharmaceutical industry), as well as WTP of the affected individual, as well as of that of relatives, friends, 
and associated caregivers, to avoid the pain and suffering.1 

Because medical expenditures are to a significant extent shared by society, via medical insurance, 
Medicare, etc., the medical expenditures actually incurred by the individual are likely to be less than the 
total medical cost to society.  The total value to society of an individual’s avoidance of hospital 
admission, then, might be thought of as having two components:  (1) the cost of illness (COI) to society, 
including the total medical costs plus the value of the lost productivity, as well as (2) the WTP of the 
individual, as well as that of others, to avoid the pain and suffering resulting from the illness. 

In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses (components 
1 plus 2 above), estimates of total COI (component 1) are typically used as conservative (lower bound) 
estimates.  Because these estimates do not include the value of avoiding the pain and suffering resulting 
from the illness (component 2), they are biased downward.  Some analyses adjust COI estimates upward 
by multiplying by an estimate of the ratio of WTP to COI, to better approximate total WTP.  Other 
analyses have avoided making this adjustment because of the possibility of over-adjusting -- that is, 
possibly replacing a known downward bias with an upward bias.  The COI values used in this benefits 
analysis will not be adjusted to better reflect the total WTP. 

Following the method used in the §812 analysis(U.S. EPA, 1999a), ICD-code-specific COI estimates 
used in our analysis consist of two components: estimated hospital charges and the estimated opportunity 
cost of time spent in the hospital (based on the average length of a hospital stay for the illness).  The 
opportunity cost of a day spent in the hospital is estimated as the value of the lost daily wage, regardless 
of whether or not the individual is in the workforce.  This was estimated as the county median weekly 
wage in 2000 divided by 5.25 

For all hospital admissions included in this analysis, estimates of hospital charges and lengths of hospital 
stays were based on statistics provided by the Agency for Healthcare Research and Quality’s Healthcare 
Utilization Project(2000).  The total COI for an ICD-code-specific hospital stay lasting n days, then, 
would be estimated as the mean hospital charge plus lost wages.  Most respiratory hospital admissions 
categories considered in epidemiological studies consisted of sets of ICD codes.  The unit dollar value for 

                                                      
1 Some people take action to avert the negative impacts of pollution.  While the costs of successful averting behavior 
should be added to the sum of the health-endpoint-specific costs when estimating the total costs of pollution, these costs 
are not associated with any single health endpoint   It is possible that in some cases the averting action was not successful, 
in which case it might be argued that the cost of the averting behavior should be added to the other costs listed (for 
example, it might be the case that an individual incurs the costs of averting behavior and in addition incurs the costs of the 
illness that the averting behavior was intended to avoid).  Because averting behavior is generally not taken to avoid a 
particular health problem (such as a hospital admission for respiratory illness), but instead is taken to avoid the entire 
collection of adverse effects of pollution, it does not seem reasonable to ascribe the entire costs of averting behavior to any 
single health endpoint.  However, omission of these averting behavior costs will tend to bias the estimates downward.      

25 The median daily wage was calculated by dividing the median weekly wage ($576 in 2000$) by 5.  The median 
daily wage was obtained from U.S. Census Bureau, Statistical Abstract of the United States: 2001, Section 12, 
Table 621: “Full-Time Wage and Salary Workers – Numbers and Earnings: 1985 to 2000.” 
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the set of ICD codes was estimated as the weighted average of the ICD-code-specific values (mean 
hospital charges plus opportunity costs, based on length of stay) of each ICD code in the set.  The weights 
were the relative frequencies of the ICD codes among hospital discharges in the United States, as 
estimated by the National Hospital Discharge Survey(Owings and Lawrence, 1999, Table 1).  Table 31 
shows the unit values thus derived for valuing respiratory and cardiovascular hospital admissions. 

Because of distortions in the market for medical services, the hospital charge may exceed “the cost of a 
hospital stay.”  We use the example of a hospital visit to illustrate the problem.  Suppose a patient is 
admitted to the hospital to be treated for an asthma episode.  The patient’s stay in the hospital (including 
the treatments received) costs the hospital a certain amount.  This is the hospital cost – i.e., the short-term 
expenditures of the hospital to provide the medical services that were provided to the patient during his 
hospital stay.  The hospital then charges the payer a certain amount – the hospital charge.  If the hospital 
wants to make a profit,  is trying to cover costs that are not associated with any one particular patient 
admission (e.g., uninsured patient services), and/or has capital expenses (building expansion or 
renovation) or other long term costs, it may charge an amount that exceeds the patient-specific short term 
costs of providing services.  The payer (e.g., the health maintenance organization or other health insurer) 
pays the hospital a certain amount – the payment – for the services provided to the patient.  The less 
incentive the payer has to keep costs down, the closer the payment will be to the charge.  If, however, the 
payer has an incentive to keep costs down, the payment may be substantially less than the charge; it may 
still, however, exceed the short-term cost for services to the individual patient. 

Although the hospital charge may exceed the short-term cost to the hospital of providing the medical 
services required during a patient’s hospital stay, cost of illness estimates based on hospital charges are 
still likely to understate the total social WTP to avoid the hospitalization in the first place, because the 
omitted WTP to avoid the pain and suffering is likely to be quite large.     
 

Table 31.  Unit Values for Respiratory and Cardiovascular Hospital Admissions 

Hospital Admission Category ICD-9 Codes Age Range Medical Cost  
(2000 $) 

Days COI a 
(2000 $) 

Pneumonia 480-487 65+ $17,030 7.07 $17,844 

COPD 490-492, 494-496 65+ $12,993 5.69 $13,648 

  20-64 $11,820 4.48 $11,820 

Asthma 493 <65 $7,448 2.95 $7,788 

All cardiovascular 390-429 65+ $20,607 5.07 $21,191 

  20-64 $22,300 4.15 $22,778 
a The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from AHRQ(2000).  
The weights are the relative frequencies of hospital discharges for each ICD-9 code in the group (Owings and Lawrence, 
1999, Table 1).   Note that when estimating the cost of lost wages due to days in the hospital, we have used the national 
median for this table.  The actual calculation in COBRA uses each county’s median income. 

 

F.5  Valuing Emergency Room Visits for Asthma 
 
To value asthma emergency room (ER) visits, we used a simple average of two estimates from the 
literature.  The first estimate comes from Smith et al.(1997), who reported that there were approximately 
1.2 million asthma-related ER visits made in 1987, at a total cost of $186.5 million, in 1987$.  The 
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average cost per visit was therefore $155 in 1987$, or $311.55 in 2000 $ (using the CPI-U for medical 
care to adjust to 2000 $).  The second is from Stanford et al.(1999), who examined data from asthmatics 
from 1996-1997, and reported an average cost of $260.67.  We use a simple average of the two estimates, 
which yields a unit value of about $286. 
 
In comparing their study to Smith et al.(1997), Stanford et al. (1999) noted that the data used by Smith et 
al., “may not reflect changes in treatment patterns during the 1990s.” In addition, its costs are the costs to 
the hospital (or ER) for treating asthma rather than charges or payments by the patient and/or third party 
payer.  Costs to the ER are probably a better measure of the value of the medical resources used up on an 
asthma ER visit. 
 

F.6  Valuing Acute Symptoms and Illness Not Requiring 
Hospitalization  
 
Several acute symptoms and illnesses have been associated with air pollution, including acute bronchitis 
in children, upper and lower respiratory symptoms, and exacerbation of asthma (as indicated by one of 
several symptoms whose occurrence in an asthmatic generally suggests the onset of an asthma episode).  
In addition, several more general health endpoints which are associated with one or more of these acute 
symptoms and illnesses, such as minor restricted activity days and work loss days, have also been 
associated with air pollution. 

Valuing Acute Bronchitis in Children 
 
Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons.  First, WTP to avoid 
acute bronchitis itself has not been estimated.  Estimation of WTP to avoid this health endpoint therefore 
must be based on estimates of WTP to avoid symptoms that occur with this illness.  Second, a case of 
acute bronchitis may last more than one day, whereas it is a day of avoided symptoms that is typically 
valued.  Finally, the C-R function used in the benefit analysis for acute bronchitis was estimated for 
children, whereas WTP estimates for those symptoms associated with acute bronchitis were obtained 
from adults. 

In previous benefits analyses, such as in the §812 Prospective analysis(U.S. EPA, 1999a), acute bronchitis 
was valued at $59.31 (in 2000 $). This is the midpoint between a low estimate and a high estimate.  The 
low estimate is the sum of the midrange values recommended by IEc (1994) for two symptoms believed 
to be associated with acute bronchitis: coughing and chest tightness.  The high estimate was taken to be 
twice the value of a minor respiratory restricted activity day.  For a more complete description of the 
derivation of this estimate, see Abt Associates(2000, p. 4-30). 

A unit value of $59.31 assumes that an episode of acute bronchitis lasts only one day.  However, this is 
generally not the case.  More typically, it can last for 6 or 7 days.  We therefore made a simple 
adjustment, multiplying the original unit value of $59.31 by 6.  The unit value thus derived and used was 
$356 (=$59.31 x 6).  
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Valuing Upper Respiratory Symptoms (URS) in Children 
 
Willingness to pay to avoid a day of upper respiratory symptoms is based on symptom-specific WTPs to 
avoid those symptoms identified by Pope et al. (1991)as part of the complex of upper respiratory 
symptoms. Three contingent valuation studies have estimated WTP to avoid various morbidity symptoms 
that are either within the complex defined by Pope et al.(1991), or are similar to those symptoms.  In each 
CV study, participants were asked their WTP to avoid a day of each of several symptoms.  The WTP 
estimates corresponding to the morbidity symptoms valued in each study are presented in Table 32. 

The three individual symptoms listed in Table 32 that were identified as most closely matching those 
listed by Pope, et al. (1991)for upper respiratory symptoms are cough, head/sinus congestion, and eye 
irritation, corresponding to “wet cough,” “runny or stuffy nose,” and “burning, aching or red eyes,” 
respectively.  A day of upper respiratory symptoms could consist of any one of the seven possible 
“symptom complexes” consisting of at least one of these three symptoms.  These seven possible symptom 
complexes are presented in Table 33.  We assumed that each of these seven complexes is equally likely.1 
The point estimate of WTP is just an average of the seven estimates of WTP for the different complexes. 

 
Table 32.  Median WTP Estimates and Derived Midrange Estimates (2000 $) 

Symptom a Dickie et al. 
(1987) 

Tolley et al. 
(1986) 

Loehman et al. 
(1979) 

Mid-Range 
Estimate 

Throat congestion 4.97 21.54 - 13.18 

Head/sinus congestion 5.80 23.20 10.80 13.18 

Coughing 1.66 18.24 6.56 9.23 

Eye irritation - 20.70 - 20.70 

Headache 1.66 33.15 - 13.18 

Shortness of breath 0.00 - 13.92 6.58 

Pain upon deep inhalation 
(PDI) 

5.82 - - 5.82 

Wheeze 3.32 - - 3.32 

Coughing up phlegm 3.63 b - -  3.63  

Chest tightness 8.30 - - 8.30 
a All estimates are WTP to avoid one day of symptom.  Midrange estimates were derived by IEc (1993). 
b 10% trimmed mean. 

  

 

                                                      
1 With empirical evidence, we could presumably improve the accuracy of the probabilities of occurrence of each type of 
URS.  Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” assumption. 
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Table 33.  Estimates of WTP to Avoid Upper Respiratory Symptoms (2000 $) 

Symptom Combinations Identified as URS by Pope et al. 
(1991) 

WTP to Avoid 
Symptom(s) 

Coughing $9.23 

Head/Sinus Congestion $13.18 

Eye Irritation $20.70 

Coughing, Head/Sinus Congestion $22.40 

Coughing, Eye Irritation $29.93 

Head/Sinus Congestion, Eye Irritation $33.88 

Coughing, Head/Sinus Congestion, Eye Irritation $43.11 

 Average: $24.63  
 

 

Valuing Lower Respiratory Symptoms (LRS) in Children 
 
Schwartz et al. (1994, p. 1235)defined lower respiratory symptoms as at least two of the following 
symptoms: cough, chest pain, phlegm, and wheeze.  To value this combination of symptoms, we used the 
same method as we did for upper respiratory symptoms.  We chose those individual health effects that 
seem most consistent with lower respiratory symptoms, we derived all of the possible combinations of 
these symptoms, and then we valued these combinations. 

The symptoms for which WTP estimates are available that reasonably match lower respiratory symptoms 
are: cough (C), chest tightness (CT), coughing up phlegm (CP), and wheeze (W).   A day of lower 
respiratory symptoms could consist of any one of the 11 combinations of at least two of these four 
symptoms.1  We assumed that each of the eleven types of lower respiratory symptoms is equally likely,2 
and the mean WTP is the average of the WTPs over all combinations.  Table 34 presents resulting 
estimate. 

Note that the WTP estimates are based on studies which considered the value of a day of avoided 
symptoms, whereas the Schwartz et al. study used as its measure a case of LRS.  Because a case of LRS 
usually lasts at least one day, and often more, our estimate is a conservative one. 

 

                                                      
1 Because cough is a symptom in some of the upper respiratory symptom clusters as well as some of the lower respiratory 
symptom clusters, there is the possibility of a very small amount of double counting – if the same individual were to have 
an occurrence of upper respiratory symptoms which included cough and an occurrence of lower respiratory symptoms 
which included cough both on exactly the same day.  Because this is probably a very small probability occurrence, the 
degree of double counting is likely to be very minor.  Moreover, because upper respiratory symptoms is applied only to 
asthmatics ages 9-11 (a very small population), the amount of potential double counting should be truly negligible. 

2 As with URS, if we had empirical evidence we could improve the accuracy of the probabilities of occurrence of each 
type of LRS.  Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” 
assumption. 
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Table 34.  Estimates of WTP to Avoid Lower Respiratory Symptoms (2000 $) 

Symptom Combinations Identified as LRS by Schwartz et al. 
(1994, p. 1235) 

WTP to Avoid 
Symptoms 

Coughing, Chest Tightness $17.52 

Coughing, Coughing Up Phlegm $12.84 

Coughing, Wheeze $12.54 

Chest Tightness, Coughing Up Phlegm $11.92 

Chest Tightness, Wheeze $11.62 

Coughing Up Phlegm, Wheeze $6.95 

Coughing, Chest Tightness, Coughing Up Phlegm $21.15 

Coughing, Chest Tightness, Wheeze $20.85 

Coughing, Coughing Up Phlegm, Wheeze $16.17 

Chest Tightness, Coughing Up Phlegm, Wheeze $15.25 

Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $24.47 

 Average: $15.57 
 
 

Valuing Work Loss Days (WLDs) 
 
Willingness to pay to avoid the loss of one day of work was estimated by dividing county-specific median 
annual wages (GeoLytics Inc., 2002a) by 50 (assuming 2 weeks of vacation) and then by 5, to get county-
specific median daily wages.  Valuing the loss of a day’s work at the wages lost is consistent with 
economic theory, which assumes that an individual is paid exactly the value of his labor. 

The use of the median rather than the mean, however, requires some comment.  If all individuals in 
society were equally likely to be affected by air pollution to the extent that they lose a day of work 
because of it, then the appropriate measure of the value of a work loss day would be the mean daily wage.  
It is highly likely, however, that the loss of work days due to pollution exposure does not occur with equal 
probability among all individuals, but instead is more likely to occur among lower income individuals 
than among high income individuals.  It is probable, for example, that individuals who are vulnerable 
enough to the negative effects of air pollution to lose a day of work as a result of exposure tend to be 
those with generally poorer health care. Individuals with poorer health care have, on average, lower 
incomes. 

To estimate the average lost wages of individuals who lose a day of work because of exposure to PM 
pollution, then, would require a weighted average of all daily wages, with higher weights on the low end 
of the wage scale and lower weights on the high end of the wage scale.  Because the appropriate weights 
are not known, however, the median wage was used rather than the mean wage.  The  median is more 
likely to approximate the correct value than the mean because means are highly susceptible to the 
influence of large values in the tail of a distribution (in this case, the small percentage of very large 
incomes in the United States), whereas the median is not susceptible to these large values. 
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Valuing Minor Restricted Activity Days (MRADs) 
 
No studies are reported to have estimated WTP to avoid a minor restricted activity day (MRAD). 
However, IEc (1993) has derived an estimate of WTP to avoid a minor respiratory restricted activity day 
(MRRAD), using WTP estimates from Tolley et al. (1986)for avoiding a three-symptom combination of 
coughing, throat congestion, and sinusitis.  This estimate of WTP to avoid a MRRAD, so defined, is 
$38.37 (1990 $), or after adjusting for inflation $50.55 (2000 $).   Although Ostro and Rothschild (1989) 
estimated the relationship between PM2.5 and MRADs, rather than MRRADs (a component of MRADs), 
it is likely that most of the MRADs associated with exposure to PM2.5 are in fact MRRADs.  For the 
purpose of valuing this health endpoint, then, we assumed that MRADs associated with PM exposure may 
be more specifically defined as MRRADs, and therefore used the estimate of mean WTP to avoid a 
MRRAD. 
 
Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other than 
WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined.  Many different 
combinations of symptoms could presumably result in some minor or less minor restriction in activity.  
Krupnick and Kopp (1988) argued that mild symptoms will not be sufficient to result in a MRRAD, so 
that WTP to avoid a MRRAD should exceed WTP to avoid any single mild symptom.  A single severe 
symptom or a combination of symptoms could, however, be sufficient to restrict activity.  Therefore WTP 
to avoid a MRRAD should, these authors argue, not necessarily exceed WTP to avoid a single severe 
symptom or a combination of symptoms.  The “severity” of a symptom, however, is similarly not 
precisely defined; moreover, one level of severity of a symptom could induce restriction of activity for 
one individual while not doing so for another.  The same is true for any particular combination of 
symptoms. 
 

Valuing Asthma Exacerbations 
 
Asthma exacerbations are valued at $42 per incidence, based on the mean of average WTP estimates for 
the four severity definitions of a “bad asthma day,” described in Rowe and Chestnut(1986). This study 
surveyed asthmatics to estimate WTP for avoidance of a “bad asthma day,” as defined by the subjects. 
For purposes of valuation, an asthma attack is assumed to be equivalent to a day in which asthma is 
moderate or worse as reported in the Rowe and Chestnut study. 
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Appendix G: Health & Economic Impacts of Existing 
EGUs in 2010 

 
This appendix presents the national and state-level results due to reducing emissions from existing power 
plants in 2010. Note that some EGUs (termed “mixed” EGUs in PIE) will comprise both existing and new 
units operating in 2010. Table 35 presents the percentage of emissions due to existing units at the “mixed” 
EGUs.  Table 36 presents the national impacts of existing plants in 2010, and Table 37 presents the state-
level health impacts of existing plants in 2010. 
 
Table 35.  Percent of “Mixed” EGU Emissions due to Existing Units in 2010 

  Percent of “Mixed” EGU Emissions due to Existing Units 
Plant Name ORIS VOC NOx SO2 PM2.5 NH3 
PUBLIC SERVICE CO COMANCHE PLT 470 27% 58% 69% 17% 100% 
COUNCIL BLUFFS 1082 44% 83% 84% 45% 100% 
CLECO CORP/RODEMACHER POWER 
STATION 6190 43% 78% 86% 54% 100% 

TXU ELECTRIC CO 6648 59% 72% 70% 82% 100% 
CITY PUBLICSERVICE B 7097 35% 56% 68% 38% 100% 
TUCSON ELECTRIC POWER CO-
SPRINGERVILLE 8223 55% 90% 92% 87% 100% 

 
 
Table 36.  Estimated Health Impacts & Economic Damages of Existing EGUs in 2010 – National Summary 

Effect 
Health Effects 

(Cases) 
Monetary Cost 

(million 2006 $) 
Adult Mortality (Pope) 13,000 $97,000 
Adult Mortality (Laden) 34,000 $250,000 
Infant Mortality 32 $230 
Chronic Bronchitis 8,100 $3,600 
AMI 20,000 $2,200 
Cardio. Hosp. Adm. 6,700 $190 
Resp. Hosp. Adm. 3,200 $44 
Asthma ER Visits 12,000 $4.5 
Asthma Exacerbation 220,000 $11 
Acute Bronchitis 19,000 $8 
URS 170,000 $5.2 
LRS 230,000 $4.3 
WLD 1,600,000 $150 
MRAD 9,800,000 $600 
Mortality (Pope) + Morbidity -- $100,000 
Mortality (Laden) + Morbidity -- $260,000 

Note: Results rounded to two digits. 
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Table 37.  Estimated Health Impacts of Existing EGUs in 2010 -- State-Level Results (Cases) 
State Mort. 

(Pope) 
Mort. 
(Laden) 

Infant 
Mort. 

Chron. 
Bron. 

AMI HA, 
Cardio 

HA, 
Resp. 

Asthma 
ER 

Acute 
Bron. 

URS LRS Asthma 
Exac. 

WLD MRAD 

Alabama 300 770 0.9 170 380 140 62 280 400 3,700 4,800 4,700 35,000 210,000 
Arizona 8 20 0.0 5 11 3 1 3 14 130 170 160 1,100 6,400 
Arkansas 140 360 0.5 76 170 65 28 130 190 1,700 2,200 2,100 15,000 90,000 
California 44 110 0.1 33 66 18 9 18 85 760 1,000 980 7,100 42,000 
Colorado 54 140 0.2 47 86 23 11 25 120 1,100 1,400 1,300 10,000 59,000 
Connecticut 200 510 0.3 120 370 110 55 110 270 2,500 3,200 3,200 24,000 140,000 
DC 47 120 0.2 28 53 20 9 38 54 490 640 640 5,900 34,000 
Delaware 75 190 0.2 44 97 37 16 69 99 900 1,200 1,200 9,000 54,000 
Florida 320 830 0.7 180 450 170 68 260 370 3,400 4,400 4,300 34,000 200,000 
Georgia 550 1,400 2.1 390 730 270 130 710 1,000 9,200 12,000 12,000 84,000 490,000 
Idaho 6 15 0.0 4 8 2 1 2 11 95 130 120 800 4,700 
Illinois 640 1,600 1.8 410 1,000 310 160 810 1,000 9,100 12,000 12,000 85,000 500,000 
Indiana 560 1,400 1.6 340 870 260 130 710 870 8,000 10,000 10,000 71,000 420,000 
Iowa 160 400 0.3 93 260 79 37 170 200 1,900 2,400 2,400 18,000 110,000 
Kansas 94 240 0.3 59 150 46 23 120 150 1,300 1,700 1,700 12,000 72,000 
Kentucky 440 1,100 1.0 260 560 210 93 410 610 5,600 7,200 7,100 54,000 320,000 
Louisiana 92 240 0.3 55 120 43 20 97 140 1,300 1,700 1,600 11,000 68,000 
Maine 47 120 0.0 27 87 26 12 21 51 460 610 600 5,100 31,000 
Maryland 400 1,000 1.0 260 560 210 92 430 630 5,800 7,500 7,400 55,000 330,000 
Massachusetts 260 660 0.3 160 480 150 72 140 350 3,100 4,100 4,000 32,000 190,000 
Michigan 700 1,800 1.8 430 1,100 330 170 840 1,000 9,500 12,000 12,000 89,000 530,000 
Minnesota 110 290 0.3 83 210 62 31 160 200 1,800 2,300 2,200 17,000 100,000 
Mississippi 140 360 0.6 81 170 65 29 140 210 1,900 2,500 2,400 17,000 100,000 
Missouri 310 780 0.8 180 470 140 70 340 420 3,800 5,000 4,900 37,000 220,000 
Montana 7 18 0.0 4 10 3 1 2 8 75 100 98 820 4,900 
Nebraska 49 120 0.1 31 81 24 12 63 78 700 920 880 6,300 38,000 
Nevada 3 8 0.0 2 4 1 1 1 5 41 55 52 400 2,400 
New Hampshire 50 130 0.1 32 96 29 14 28 67 610 800 800 6,400 38,000 
New Jersey 560 1,400 1.0 340 1,000 310 160 340 820 7,500 9,800 9,500 69,000 410,000 
New Mexico 10 26 0.0 7 15 4 2 3 17 150 200 190 1,400 8,400 
New York 980 2,500 1.8 610 1,800 550 280 560 1,400 12,000 16,000 16,000 120,000 740,000 
North Carolina 700 1,800 2.2 430 920 350 150 740 1,000 9,500 13,000 12,000 89,000 530,000 
North Dakota 9 23 0.0 5 15 4 2 8 10 91 120 120 990 5,900 
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State Mort. 
(Pope) 

Mort. 
(Laden) 

Infant 
Mort. 

Chron. 
Bron. 

AMI HA, 
Cardio 

HA, 
Resp. 

Asthma 
ER 

Acute 
Bron. 

URS LRS Asthma 
Exac. 

WLD MRAD 

Ohio 1,300 3,200 2.7 730 1,900 580 290 1,400 1,700 16,000 20,000 20,000 150,000 880,000 
Oklahoma 120 310 0.4 71 160 59 26 120 170 1,600 2,100 2,000 14,000 86,000 
Oregon 7 17 0.0 4 9 3 1 2 10 89 120 110 870 5,200 
Pennsylvania 1,400 3,600 2.2 720 2,400 730 340 620 1,500 14,000 18,000 18,000 140,000 840,000 
Rhode Island 56 140 0.1 33 100 31 15 29 68 620 820 830 6,700 40,000 
South Carolina 290 740 0.8 170 370 140 60 270 400 3,600 4,700 4,600 34,000 200,000 
South Dakota 18 47 0.1 11 31 9 5 21 27 240 320 300 2,200 13,000 
Tennessee 510 1,300 1.3 300 640 240 110 450 660 6,000 7,900 7,700 60,000 360,000 
Texas 330 840 1.2 240 470 170 82 440 640 5,800 7,700 7,300 51,000 300,000 
Utah 21 54 0.1 20 33 9 5 15 72 640 850 790 4,700 27,000 
Vermont 42 110 0.1 25 80 24 11 19 45 410 540 550 4,900 29,000 
Virginia 690 1,700 1.9 440 930 350 160 710 1,000 9,300 12,000 12,000 92,000 550,000 
Washington 18 47 0.0 13 26 7 3 6 29 260 340 330 2,600 16,000 
West Virginia 230 590 0.5 120 280 110 44 160 240 2,200 2,800 2,800 23,000 140,000 
Wisconsin 280 710 0.6 180 470 140 68 310 390 3,500 4,600 4,600 36,000 210,000 
Wyoming 3 8 0.0 2 4 1 0 1 4 35 47 45 370 2,200 
Total 13,000 34,000 32 8,100 20,000 6,700 3,200 12,000 19,000 170,000 230,000 220,000 1,600,000 9,800,000 
Note: Results rounded to two digits.
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